首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies, although critical for host defense against West Nile virus (WNV), can both neutralize and enhance viral infection. In this issue of Cell Host & Microbe, Pierson et al. dissect these opposing effects and demonstrate that, when 120 epitopes are available per WNV virion, approximately 25 are occupied by antibody at 50% neutralization. At lower occupancies, enhancement of infection dominates; at higher ones, neutralization ensues. These results are important for WNV vaccine design and for potential therapeutic use of antibodies to WNV.  相似文献   

2.
The cholesterol-dependent cytolysins are pore-forming toxins. Pneumolysin is the cytolysin produced by Streptococcus pneumoniae and is a key virulence factor. The protein contains 471 amino acids and four structural domains. Binding to cholesterol is followed by oligomerization and membrane pore formation. Pneumolysin also activates the classical pathway of complement. Mutational analysis of the toxin and knowledge of sequence variation in outbreak strains suggests that additional activities of biologic importance exist. Pneumolysin activates a large number of genes, some by epigenetic modification, in eukaryotic cells and multiple signal transduction pathways. Cytolytic effects contribute to lung injury and neuronal damage while pro-inflammatory effects compound tissue damage. Nevertheless pneumolysin is a focal point of the immune response to pneumococci. Toll-like receptor 4-mediated recognition, osmosensing and T-cell responses to pneumolysin have been identified. In some animal models mutants that lack pneumolysin are associated with impaired bacterial clearance. Pneumolysin, which itself may induce apoptosis in neurones and other cells can activate host-mediated apoptosis in macrophages enhancing clearance. Disease pathogenesis, which has traditionally focused on the harmful effects of the toxin, increasingly recognises that a precarious balance between limited host responses to pneumolysin and either excessive immune responses or toxin-mediated subversion of host immunity exists.  相似文献   

3.
Journal of Physiology and Biochemistry - As a highly evolutionarily conserved process, autophagy can be found in all types of eukaryotic cells. Such a constitutive process maintains cellular...  相似文献   

4.
5.
6.
Signalling pathways of the TNF superfamily: a double-edged sword   总被引:1,自引:0,他引:1  
Two different tumour-necrosis factors (TNFs), first isolated in 1984, were found to be cytotoxic to tumour cells and to induce tumour regression in mice. Research during the past two decades has shown the existence of a superfamily of TNF proteins consisting of 19 members that signal through 29 receptors. These ligands, while regulating normal functions such as immune responses, haematopoiesis and morphogenesis, have also been implicated in tumorigenesis, transplant rejection, septic shock, viral replication, bone resorption, rheumatoid arthritis and diabetes; so indicating their role as 'double-edged swords'. These cytokines either induce cellular proliferation, survival, differentiation or apoptosis. Blockers of TNF have been approved for human use in treating TNF-linked autoimmune diseases in the United States and other countries.  相似文献   

7.
Role of JNK activation in apoptosis: A double-edged sword   总被引:38,自引:0,他引:38  
Liu J  Lin A 《Cell research》2005,15(1):36-42
JNK is a key regulator of many cellular events, including programmed cell death (apoptosis). In the absence of NF-κB activation, prolonged JNK activation contributes to TNF-α induced apoptosis. JNK is also essential for UV induced apoptosis. However, recent studies reveal that JNK can suppress apoptosis in IL-3-dependent hematopoietic cells via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Thus, JNK has pro- or antiapoptotic functions, depending on cell type, nature of the death stimulus, duration of its activation and the activity of other signaling pathways.  相似文献   

8.
CXC chemokines are involved in chemotaxis, regulation of cell growth, induction of apoptosis and modulation of angiostatic effects. CXCL9, CXCL10, CXCL11, CXCL4 and its variant CXCL4L1 are members of the CXC chemokine family, which bind to the CXCR3 receptor to exert their biological effects. These chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer and metastasis. In this review, we focus on accumulating evidence demonstrating the pivotal role of CXCR3 in tumor progression. Its effects are mediated directly in tumor cells or indirectly through the regulation of angiogenesis and tumor immunity. Understanding the emerging role of CXCR3 and its signaling mechanisms further validates this receptor as a biomarker and therapeutic target for tumor progression and tumor angiogenesis.  相似文献   

9.
Mesenchymal stem cells (MSCs) have been employed successfully to treat various immune disorders in animal models and clinical settings. Our previous studies have shown that MSCs can become highly immunosuppressive upon stimulation by inflammatory cytokines, an effect exerted through the concerted action of chemokines and nitric oxide (NO). Here, we show that MSCs can also enhance immune responses. This immune-promoting effect occurred when proinflammatory cytokines were inadequate to elicit sufficient NO production. When inducible nitric oxide synthase (iNOS) production was inhibited or genetically ablated, MSCs strongly enhance T-cell proliferation in vitro and the delayed-type hypersensitivity response in vivo. Furthermore, iNOS(-/-) MSCs significantly inhibited melanoma growth. It is likely that in the absence of NO, chemokines act to promote immune responses. Indeed, in CCR5(-/-)CXCR3(-/-) mice, the immune-promoting effect of iNOS(-/-) MSCs is greatly diminished. Thus, NO acts as a switch in MSC-mediated immunomodulation. More importantly, the dual effect on immune reactions was also observed in human MSCs, in which indoleamine 2,3-dioxygenase (IDO) acts as a switch. This study provides novel information about the pathophysiological roles of MSCs.  相似文献   

10.
While the classical pathway of NF-kappaB activation plays critical roles in a wide range of biological processes, the more recently described "non-canonical" NF-kappaB pathway has important but more restricted roles in both normal and pathological processes. The non-canonical NF-kappaB pathway, based on processing of the nf-kappab2 gene product p100 to generate p52, appears to be involved in B-cell maturation and lymphoid development. Deregulated activation of this pathway has been observed in a variety of malignant and autoimmune diseases, thus inhibitors that specifically target p100 processing might be predicted to have potential roles as immunomodulators and in the therapy of malignant diseases. We review current understandings of NF-kappaB activation, particularly the mechanisms of p100 processing under both physiological and pathological conditions.  相似文献   

11.
Abstract

The fragile X-related (FXR) family proteins FMRP, FXR1, and FXR2 are RNA binding proteins that play a critical role in RNA metabolism, neuronal plasticity, and muscle development. These proteins share significant homology in their protein domains, which are functionally and structurally similar to each other. FXR family members are known to play an essential role in causing fragile X mental retardation syndrome (FXS), the most common genetic form of autism spectrum disorder. Recent advances in our understanding of this family of proteins have occurred in tandem with discoveries of great importance to neurological disorders and cancer biology via the identification of their novel RNA and protein targets. Herein, we review the FXR family of proteins as they pertain to FXS, other mental illnesses, and cancer. We emphasize recent findings and analyses that suggest contrasting functions of this protein family in FXS and tumorigenesis based on their expression patterns in human tissues. Finally, we discuss current gaps in our knowledge regarding the FXR protein family and their role in FXS and cancer and suggest future studies to facilitate bench to bedside translation of the findings.  相似文献   

12.
Medulloblastoma, a brain tumor arising in the cerebellum, is the most common solid childhood malignancy. The current standard of care for medulloblastoma leaves survivors with life-long side effects. Gaining insight into mechanisms regulating transformation of medulloblastoma cells-of-origin may lead to development of better treatments for these tumors. Cerebellar granule neuron precursors (CGNPs) are proposed cells-of-origin for certain classes of medulloblastoma, specifically those marked by aberrant Sonic hedgehog (Shh) signaling pathway activation. CGNPs require signaling by Shh for proliferation during brain development. In mitogen-stimulated cells, nuclear localized cyclin dependent kinase (cdk) inhibitor p27 (Kip1) functions as a checkpoint control at the G1- to S-phase transition by inhibiting cdk2. Recent studies have suggested cytoplasmically localized p27kip1 acquires oncogenic functions. Here, we show that p27Kip1 is cytoplasmically localized in CGNPs and mouse Shh-mediated medulloblastomas. Tranasgenic mice bearing an activating mutation in the Shh pathway and lacking one or both p27Kip1 alleles have accelerated tumor incidence compared to mice bearing both p27Kip1 alleles. Interestingly, mice heterozygous for p27Kip1 have decreased survival latency compared to p27Kip1-null animals. Our data indicate that this may reflect the requirement for at least one copy of p27Kip1 for recruiting cyclin D/cdk4/6 to promote cell cycle progression yet insufficient expression in the heterozygous or null state to inhibit cyclin E/cdk2. Finally, we find that mis-localized p27Kip1 may play a positive role in motility in medulloblastoma cells. Together, our data indicate that the dosage of p27Kip1 plays a role in cell cycle progression and tumor suppression in Shh-mediated medulloblastoma expansion.  相似文献   

13.
This paper presents qualitative and quantitative study of a TB mathematical model to test results from a survey carried out in Benin City, Nigeria. The purpose of the survey was to determine factors that could enhance the case detection rate of tuberculosis. Results from the survey identified four key factors that must be combined for an effective control of TB and increase the case detection rate: effective awareness programme, active cough identification, associated cost factor for treatment of identified cases and effective treatment. The overall effect of these factors on the basic reproduction number under treatment, RT, of the TB model was considered. In all, a serious concentration on tuberculosis awareness programmes and active cough identification as a marker for someone having TB was shown to significantly reduce the value of the reproduction number, hereby reducing the severity of the disease in the presence of treatment.  相似文献   

14.
15.
16.
17.
Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome characterized by the development of vestibular schwannomas and other tumors of the nervous system, including cranial and spinal meningiomas, schwannomas, and ependymomas. The presence of bilateral vestibular schwannomas is sufficient for the diagnosis. Skin manifestations are less common than in neurofibromatosis type 1 (NF1; von Recklinghausen disease). The apparent clinical distinction between NF1 and NF2 has been confirmed at the level of the gene locus by linkage studies; the gene for NF1 maps to chromosome 17, whereas the gene for NF2 has been assigned (in a single family) to chromosome 22. To increase the precision of the genetic mapping of NF2 and to determine whether additional susceptibility loci exist, we have performed linkage analysis on 12 families with NF2 by using four polymorphic markers from chromosome 22 and a marker at the NF1 locus on chromosome 17. Our results confirm the assignment of the gene for NF2 to chromosome 22 and do not support the hypothesis of genetic heterogeneity. We believe that chromosome 22 markers can now be used for presymptomatic diagnosis in selected families. The NF2 gene is tightly linked to the D22S32 locus (maximum lod score 4.12; recombination fraction 0). A CA-repeat polymorphism at the CRYB2 locus was the most informative marker in our families (lod score 5.99), but because the observed recombination fraction between NF2 and CRYB2 was 10 cM, predictions using this marker will need to be interpreted with caution.  相似文献   

18.
Hyaluronate appears to be covalently linked to the cell surface   总被引:1,自引:0,他引:1  
The purpose of this study was to examine the nature of the linkage between cell-surface hyaluronate and the plasma membrane. To accomplish this, rat fibrosarcoma cells were cultured in the presence of [3H]-acetate to isotopically label the hyaluronate, and then fixed with glutaraldehyde, which cross-links proteins but does not react directly with hyaluronate. The glutaraldehyde fixation stabilized the cells so that they could be manipulated in ways which would otherwise destroy cells. The fixed cells were then subjected to various treatments, and the amount of hyaluronate remaining on the cell surface was assayed via exhaustive digestion with Streptomyces hyaluronidase. Using this technique, we found that 1) cell-surface hyaluronate was quite stable for extended periods of time even in the presence of a large excess of non-labeled hyaluronate; 2) 4 M guanidine HCl and detergents did not extract a significant portion of cell-surface hyaluronate; 3) solutions of varying ionic strength (0-1 M NaCl) had no effect on the retention of hyaluronate; 4) the cell coat was stable in the range of pH 4-11, but outside this range a significant amount of hyaluronate was released; and 5) treatment with proteases released cell-surface hyaluronate. These results are consistent with the possibility that hyaluronate is covalently linked to a protein associated with the plasma membrane. Further support for this model came from experiments with the detergent Triton X-114, which can be used to separate soluble proteins from hydrophobic proteins. When nonfixed rat fibrosarcoma cells were extracted with this detergent and then partitioned by centrifugation, approximately 30 times as much hyaluronate was present in the detergent fraction which contained the hydrophobic proteins, as compared to the extracts pretreated with trypsin prior to phase separation. Again, these results suggest that cell-surface hyaluronate is directly linked to a hydrophobic core protein intercalated in the plasma membrane.  相似文献   

19.
Medulloblastoma, a brain tumor arising in the cerebellum, is the most common solid childhood malignancy. The current standard of care for medulloblastoma leaves survivors with life-long side effects. Gaining insight into mechanisms regulating transformation of medulloblastoma cells-of-origin may lead to development of better treatments for these tumors. Cerebellar granule neuron precursors (CGNPs) are proposed cells of origin for certain classes of medulloblastoma, specifically those marked by aberrant Sonic hedgehog (Shh) signaling pathway activation. CGNPs require signaling by Shh for proliferation during brain development. In mitogen-stimulated cells, nuclear localized cyclin-dependent kinase (Cdk) inhibitor p27Kip1 functions as a checkpoint control at the G1- to S-phase transition by inhibiting Cdk2. Recent studies have suggested that cytoplasmically localized p27Kip1 acquires oncogenic functions. Here, we show that p27Kip1 is cytoplasmically localized in CGNPs and mouse Shh-mediated medulloblastomas. Transgenic mice bearing an activating mutation in the Shh pathway and lacking one or both p27Kip1 alleles have accelerated tumor incidence compared to mice bearing both p27Kip1 alleles. Interestingly, mice heterozygous for p27Kip1 have decreased survival latency compared to p27Kip1-null animals. Our data indicate that this may reflect the requiremen of at least one copy of p27Kip1 for recruiting cyclin D/Cdk4/6 to promote cell cycle progression, yet insufficient expression in the heterozygous or null state to inhibit cyclin E/Cdk2. Finally, we find that mislocalized p27Kip1 may play a positive role in motility in medulloblastoma cells. Together, our data indicate that the dosage of p27Kip1 plays a role in cell cycle progression and tumor suppression in Shh-mediated medulloblastoma expansion.Key words: p27, Kip1, medulloblastoma, cerebellum, cell cycle, Sonic hedgehog, tumor, motility, RhoA  相似文献   

20.
Bavoux C  Hoffmann JS  Cazaux C 《Biochimie》2005,87(7):637-646
A major tolerance mechanism that functions to replicate damaged genomic DNA across lesions that have escaped elimination by repair mechanism is translesion DNA synthesis (TLS). DNA polymerase kappa (Pol kappa), a specialised low-fidelity DNA polymerase which is able to perform DNA synthesis across several damaged bases, is one of the enzymes involved in the process. The mutagenic nature of Pol kappa implies that its expression must be tightly regulated to prevent the formation of excessive genetic disorders along undamaged parts of the genome. Indeed, Pol kappa overexpression, which is notably observed in lung cancer, results not only in increased spontaneous mutagenesis, but also in pleiotropic alterations such as DNA breaks, genetic exchanges and aneuploidy. This review will discuss both aspects of DNA polymerase kappa, which can be considered as a genomic supervisor participating in genome maintenance and when misregulated as a genetic instability enhancer as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号