首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

Arabidopsis gulliver3 - D/dwarf4 - D displays growth-promoting phenotypes due to activation tagging of a key brassinosteroid biosynthetic gene DWARF4. In gul3-D/dwf4-D , the Jasmonate and Salicylate signaling pathways were relatively activated and suppressed, respectively.

Abstract

Energy allocation between growth and defense is elegantly balanced to achieve optimal development in plants. Brassinosteroids (BRs), steroidal hormones essential for plant growth, are regulated by other plant hormones, including auxin and jasmonates (JA); auxin stimulates the expression of a key brassinosteroid (BR) biosynthetic gene, DWARF4 (DWF4), whereas JA represses it. To better understand the interaction mechanisms between growth and defense, we isolated a fast-growing mutant, gulliver3-D (gul3-D), that resulted from the activation tagging of DWF4, and examined the response of this mutant to defense signals, including JA, Pseudomonas syringae pv. tomato (Pst DC3000) infection, and wounding. The degree of root growth inhibition following MeJA treatment was significantly decreased in gul3-1D/dwf4-5D relative to the wild type, suggesting that JA signaling is partially desensitized in gul3-1D. Quantitative RT-PCR analysis of the genes involved in JA and salicylic acid (SA) responses, including MYC2, PDF1.2, CORI3, PR1, and PR2, revealed that JA signaling was preferentially activated in gul3-1D, whereas SA signaling was suppressed. As a result, gul3-1D was more susceptible to a biotrophic pathogen, Pst DC3000. Based on our results, we propose a model in which BR and JA cooperate to balance energy allocation between growth and defense responses. In ambient conditions, BRs promote plant growth; however, when stresses trigger JA signaling, JA compromises BR signaling by downregulating DWF4 expression.  相似文献   

2.

Key message

Development of wheat- D. villosum 1V#4 translocation lines; physically mapping the Glu - V1 and Gli - V1 / Glu - V3 loci; and assess the effects of the introduced Glu - V1 and Gli - V1 / Glu - V3 on wheat bread-making quality.

Abstract

Glu-V1 and Gli-V1/Glu-V3 loci, located in the chromosome 1V of Dasypyrum villosum, were proved to have positive effects on grain quality. However, there are very few reports about the transfer of the D. villosum-derived seed storage protein genes into wheat background by chromosome manipulation. In the present study, a total of six CS-1V#4 introgression lines with different alien-fragment sizes were developed through ionizing radiation of the mature female gametes of CS––D. villosum 1V#4 disomic addition line and confirmed by cytogenetic analysis. Genomic in situ hybridization (GISH), chromosome C-banding, twelve 1V#4-specific EST–STS markers and seed storage protein analysis enabled the cytological physical mapping of Glu-V1 and Gli-V1/Glu-V3 loci to the region of FL 0.50–1.00 of 1V#4S of D. villosum. The Glu-V1 allele of D. villosum was Glu-V1a and its coded protein was V71 subunit. Quality analysis indicated that Glu-V1a together with Gli-V1/Glu-V3 loci showed a positive effect on protein content, Zeleny sedimentation value and the rheological characteristics of wheat flour dough. In addition, the positive effect could be maintained when specific Glu-V1 and Gli-V1/Glu-V3 loci were transferred to the wheat genetic background as in the case of T1V#4S-6BS·6BL, T1V#4S·1BL and T1V#4S·1DS translocation lines. These results showed that the chromosome segment carrying the Glu-V1 and Gli-V1/Glu-V3 loci in 1V#4S of D. villosum had positive effect on bread-making quality, and the T1V#4S-6BS·6BL and T1V#4S·1BL translocation lines could be useful germplasms for bread wheat improvement. The developed 1V#4S-specific molecular markers could be used to rapidly identify and trace the alien chromatin of 1V#4S in wheat background.  相似文献   

3.
4.

Key message

BcMF11 as a non-coding RNA gene has an essential role in pollen development, and might be useful for regulating the pollen fertility of crops by antisense RNA technology.

Abstract

We previously identified a 828-bp full-length cDNA of BcMF11, a novel pollen-specific non-coding mRNA-like gene from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). However, little information is known about the function of BcMF11 in pollen development. To investigate its exact biological roles in pollen development, the BcMF11 cDNA was antisense inhibited in transgenic Chinese cabbage under the control of a tapetum-specific promoter BcA9 and a constitutive promoter CaMV 35S. Antisense RNA transgenic plants displayed decreasing expression of BcMF11 and showed distinct morphological defects. Pollen germination test in vitro and in vivo of the transgenic plants suggested that inhibition of BcMF11 decreased pollen germination efficiency and delayed the pollen tubes’ extension in the style. Under scanning electron microscopy, many shrunken and collapsed pollen grains were detected in the antisense BcMF11 transgenic Chinese cabbage. Further cytological observation revealed abnormal pollen development process in transgenic plants, including delayed degradation of tapetum, asynchronous separation of microspore, and aborted development of pollen grain. These results suggest that BcMF11, as a non-coding RNA, plays an essential role in pollen development and male fertility.  相似文献   

5.
6.

Key message

After cloning and mapping of wheat TaSdr genes, both the functional markers for TaSdr - B1 and TaVp - 1B were validated, and the distribution of allelic variations at TaSdr - B1 locus in the wheat cultivars from 19 countries was characterized.

Abstract

Seed dormancy is a major factor associated with pre-harvest sprouting (PHS) in common wheat (Triticum aestivum L.). Wheat TaSdr genes, orthologs of OsSdr4 conferring seed dormancy in rice, were cloned by a comparative genomics approach. They were located on homoeologous group 2 chromosomes, and designated as TaSdr-A1, TaSdr-B1 and TaSdr-D1, respectively. Sequence analysis of TaSdr-B1 revealed a SNP at the position -11 upstream of the initiation codon, with bases A and G in cultivars with low and high germination indices (GI), respectively. A cleaved amplified polymorphism sequence marker Sdr2B was developed based on the SNP, and subsequently functional analysis of TaSdr-B1 was conducted by association and linkage mapping. A QTL for GI co-segregating with Sdr2B explained 6.4, 7.8 and 8.7 % of the phenotypic variances in a RIL population derived from Yangxiaomai/Zhongyou 9507 grown in Shijiazhuang, Beijing and the averaged data from those environments, respectively. Two sets of Chinese wheat cultivars were used for association mapping, and results indicated that TaSdr-B1 was significantly associated with GI. Analysis of the allelic distribution at the TaSdr-B1 locus showed that the frequencies of TaSdr-B1a associated with a lower GI were high in cultivars from Japan, Australia, Argentina, and the Middle and Lower Yangtze Valley Winter Wheat Region and Southwest Winter Wheat Region in China. This study provides not only a reliable functional marker for molecular-assisted selection of PHS in wheat breeding programs, but also gives novel information for a comprehensive understanding of seed dormancy.  相似文献   

7.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

8.
Chemical investigation of a marine microalga, Nannochloropsis granulata, led to the isolation of four digalactosyldiacylglycerols namely, (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (1), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (3), and (2S)-1,2-bis-O-eicosapentaenoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (4), together with their monogalactosyl analogs (58). Among the isolated galactolipids 2 and 3 were new natural products. Complete stereochemistry of 1, 4, 5, 7, and 8 was determined for the first time by both spectroscopic techniques and classical degradation methods. Both mono- and digalactosyldiacylglycerols isolated from N. granulata possessed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression indicating the possible use as anti-inflammatory agents.  相似文献   

9.
10.
11.

Key message

MLO mediates pollen hydration.

Abstract

Hydration is the first step in pollen germination. However, the process is not well understood. OsMLO12 is highly expressed in mature pollen grains; plants containing alleles caused by transfer DNA insertions do not produce homozygous progeny. Reciprocal crosses between wild-type and OsMLO12/osmlo12 plants showed that the mutant alleles were not transmitted through the male gametophyte. Microscopic observations revealed that, although mutant grains became mature pollen with three nuclei, they did not germinate in vitro or in vivo due to a failure in hydration. The OsMLO12 protein has seven transmembrane motifs, with an N-terminal extracellular region and a C-terminal cytosolic region. We demonstrated that the C-terminal region mediates a calcium-dependent interaction with calmodulin. Our findings suggest that pollen hydration is regulated by MLO12, possibly through an interaction with calmodulin in the cytosol.  相似文献   

12.

Key message

Identification and allele-specific marker development of a functional SNP of HvLox - 1 which associated with barley lipoxygenase activity.

Abstract

Improving the stability of the flavor of beer is one of the main objectives in breeding barley for malting, and lipoxygenase-1 (LOX-1) is a key enzyme controlling this trait. In this study, a modified LOX activity assay was used for null LOX-1 mutant screening. Four barley landraces with no detected level of LOX-1 activity were screened from 1,083 barley germplasm accessions from China. The genomic sequence diversity of the HvLox-1 gene of the four null LOX-1 Chinese landraces was compared with that of a further 76 accessions. A total of 104 nucleotide polymorphisms were found, which contained 83 single-nucleotide polymorphisms (SNPs), 7 multiple-nucleotide polymorphisms, and 14 insertions and deletions. Most notably, we found a rare C/G mutation (SNP-61) in the second intron which led to null LOX-1 activity through an altered splicing acceptor site. In addition, an allele-specific polymerase chain reaction marker was developed for the genotyping of SNP-61, which could be used in breeding programs for barley to be used for malting. The objective was to improve beer quality.  相似文献   

13.
The geometric and electronic structures, absorption spectra, transporting properties, chemical reactivity indices and electrostatic potentials of the planar three-coordinate organoboron compounds 1-2 and twisted reference compound Mes 3 B, have been investigated by employing density functional theory (DFT) and conceptual DFT methods to shed light on the planarity effects on the photophysical properties and the chemical reactivity. The results show that the planar compounds 1-2 exhibit significantly lower HOMO level than Mes 3 B, owing to the stronger electronic induction effect of boron centers. This feature conspicuously induces a blue shifted absorption for 1, although 1 seemingly possesses more extended conjugation framework than Mes 3 B. Importantly, the reactivity strength of the boron atoms in 1-2 is much lower than that in Mes 3 B, despite the fact that the tri-coordinate boron centers of 1-2 are completely naked. The interesting and abnormal phenomenon is caused by the strong p-π electronic interactions, that is, the empty p-orbital of boron center is partly filled by π-electron of the neighbor carbon atoms in 1-2, which are confirmed by the analysis of Laplacian of the electron density and natural bond orbitals. Furthermore, the negative electrostatic potentials of the boron centers in 1-2 also interpret that they are not the most preferred sites for incoming nucleophiles. Moreover, it is also found that the planar compounds 1-2 can act as promising electron transporting materials since the internal reorganization energies for electron are really small.
Figure
The planar effects significantly affect the frontier molecular orbital levels, absorption wavelengths, transporting properties, and chemical reactivities of compounds 1-2. The underlying origin has been revealed by density functional theory and conceptual density functional theory calculations  相似文献   

14.

Key message

Fine mapping of the novel thermo-sensitive genic male sterility locus tms9 - 1 in the traditional TGMS line HengnongS-1 revealed that the MALE STERILITY1 homolog OsMS1 is the candidate gene.

Abstract

Photoperiod-thermo-sensitive genic male sterility (P/TGMS) has been widely used in the two-line hybrid rice breeding system. HengnongS-1 is one of the oldest TGMS lines and is often used in indica two-line breeding programs in China. In this study, our genetic analysis showed that the TGMS gene in HengnongS-1 was controlled by a single recessive gene that was non-allelic with the other TGMS loci identified, including C815S, Zhu1S and Y58S. Using SSR markers and bulked segregant analysis, we located the TGMS locus on chromosome 9 and named the gene tms9-1. Fine mapping further narrowed the tms9-1 loci to a 162 kb interval between two dCAPS markers. Sequence analysis revealed that a T to C substitution results in an amino acid change in the tms9-1 candidate gene (Os09g27620) in HengnongS-1 as compared to Minghui63. Sequencing of other rice accessions, including six P/TGMS lines, seven indica varieties and nine japonica varieties, showed that this SNP was exclusive to HengnongS-1. With multiple sequence alignment and expression pattern analyses, the rice MALE STERILITY1 homolog OsMS1 gene was identified as the candidate gene for tms9-1. Therefore, our study identified a novel TGMS locus and will facilitate the functional identification of the tms9-1 gene. Moreover, the markers linked to the tms9-1 gene will provide useful tools for the development of new TGMS lines by marker-assisted selection in two-line hybrid rice breeding programs.  相似文献   

15.

Key message

We induced a fdr1 mutation in maize which makes haploid plants male fertile due to first division restitution; the optimum sodium azide treatment on maize kernels has been identified.

Abstract

Sodium azide mutagenesis experiments were performed on haploid and diploid maize plants. Kernels with haploid embryos of maize inbred line B55 were induced by pollinating with RWS pollen. These kernels were treated with 0.2, 0.5, or 1.0 mM sodium azide solution for 2 h. The 0.5 mM solution was optimal for inducing numerous albino sectors on the treated plants without significant damage. Kernels of a maize hybrid, Oh43 × B55, were treated with sodium azide solutions at concentrations of 1.5, 2.0, 2.5, and 3.0 mM. Haploids were generated by pollinating RWS pollen. The highest rate of chlorophyll mutations in seedlings (15.3 % [13/85]) was recorded with the 2.5 mM concentration. A mutated haploid plant (PP1-50) with higher pollen fertility was isolated during the experiments. This haploid plant produced four kernels on the ear after selfing. These kernels were germinated and produced ears with full seed set after selfing. The haploid plants induced from PP1-50 diploids also exhibited high pollen fertility. In situ hybridization studies showed that meiocytes in PP1-50 haploid anthers underwent first division restitution at a rate of 48 % and produced equally divided dyads. We designated the genetic factor responsible for this high pollen fertility as fdr1. PP1-50 haploid ears exhibited high levels of sterility, as seen for regular haploids. Diploid PP1-50 meiocytes in the anther underwent normal meiosis, and all selfed progenies were normal diploids. We concluded that the fdr1 phenotype is only expressed in the anthers of haploid plants and not in the anthers of diploid plants.  相似文献   

16.
17.
18.
A MeOH extract of cultivated Chondrus crispus showed dose-dependent nitric oxide (NO) inhibition of lipopolysaccharide-induced NO production in macrophage RAW264.7 cells. NO inhibition-guided fractionation of the extract led to identification of eicosapentaenoic acid (EPA, 1), arachidonic acid (AA, 2), lutein (3), and eight galactolipids as active components. Based on spectral analysis, the isolated galactolipids were identified as (2S)-1,2-bis-O-eicosapentaenoyl-3-O-β-d-galactopyranosylglycerol (4), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (5), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetranoyl)-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (6), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (7), (2S)-1,2-bis-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (8), (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (9), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (10), and (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (11). All the isolated compounds showed significant NO inhibitory activity. This is the first report of the isolation and identification of individual galactolipids from C. crispus. Moreover, (2S)-1,2-bis-O-arachidonoyl ?3-O-β-d-galactopyranosylglycerol (8) is a novel compound.  相似文献   

19.
1H-Pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylic acid (6a) and its 1-methyl (6b) and 1-benzyl (6c) derivatives were synthesized. 3-(5-Methoxycarbonyl-4H-furo[3,2-b]-pyrrole-2-yl)propenoic acid (1) was converted to the corresponding azide 2, which in turn was cyclized to give 3 by heating in diphenylether. The pyridone 3 obtained was aromatized with phosphorus oxychloride, then reduced with zinc in acetic acid to give methyl 1H-pyrrolo[2′,3′:4,5]furo[3,2-c]pyridine-2-carboxylate (5), which by hydrolysis gave the corresponding carboxylic acid 6a.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号