首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATHB-2 gene encoding an homeodomain-leucine zipper protein is rapidly and strongly induced by changes in the ratio of red to far-red light which naturally occur during the daytime under the canopy and induce in many plants the shade avoidance response. Here, we show that elevated ATHB-2 levels inhibit cotyledon expansion by restricting cell elongation in the cotyledon-length and -width direction. We also show that elevated ATHB-2 levels enhance longitudinal cell expansion in the hypocotyl. Interestingly, we found that ATHB-2-induced, as well as shade-induced, elongation of the hypocotyl is dependent on the auxin transport system. In the root and hypocotyl, elevated ATHB-2 levels also inhibit specific cell proliferation such as secondary growth of the vascular system and lateral root formation. Consistent with the key role of auxin in these processes, we found that auxin is able to rescue the ATHB-2 lateral root phenotype. We also show that reduced levels of ATHB-2 result in reciprocal phenotypes. Moreover, we demonstrate that ATHB-2 functions as a negative regulator of gene expression in a transient assay. Remarkably, the expression in transgenic plants of a derivative of ATHB-2 with the same DNA binding specificity but opposite regulatory properties results in a shift in the orientation of hypocotyl cell expansion toward radial expansion, and in an increase in hypocotyl secondary cell proliferation. A model of ATHB-2 function in the regulation of shade-induced growth responses is proposed.  相似文献   

2.
3.
4.
5.
Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the FLAVIN-BINDING KELCH REPEAT F-BOX 1 / LOV KELCH PROTEIN 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.  相似文献   

6.
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1’s involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.  相似文献   

7.
Endoreduplication, a strategy to amplify nuclear DNA without cell division, is very common but poorly understood in plants. Recent findings in Drosophila provide a first picture of the molecular mechanism, which appears to be conserved between plants and animals. In Arabidopsis, the study of trichomes, leaf epidermis and hypocotyl cells sheds new light on the developmental regulation of this process, and its relation to cell expansion.  相似文献   

8.
Hypocotyl elongation is an early event in plant growth and development and is sensitive to fluctuations in light, temperature, water potential and nutrients. Most research on hypocotyl elongation has focused on the regulatory mechanism of a single environment factor. However, information about combined effects of multi‐environment factors remains unavailable, and overlapping sites of the environmental factors signaling pathways in the regulation of hypocotyl elongation remain unclear. To identify how cross‐talks among light intensity, temperature and water potential regulate hypocotyl elongation in Brassica rapa L. ssp. chinesis, a comprehensive isobaric tag for relative and absolute quantitation‐based proteomic approach was adopted. In total, 7259 proteins were quantified, and 378 differentially expressed proteins (DEPs) were responsive to all three environmental factors. The DEPs were involved in a variety of biochemical processes, including signal transduction, cytoskeletal organization, carbohydrate metabolism, cell wall organization, protein modification and transport. The DEPs did not function in isolation, but acted in a large and complex interaction network to affect hypocotyl elongation. Among the DEPs, phyB was outstanding for its significant fold change in quantity and complex interaction networks with other proteins. In addition, changes of sensitivity to environmental factors in phyB‐9 suggested a key role in the regulation of hypocotyl elongation. Overall, the data presented in this study show a profile of proteins interaction network in response to light intensity, temperature and water potential and provides molecular basis of hypocotyl elongation in B. rapa.  相似文献   

9.
10.
Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.  相似文献   

11.
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.  相似文献   

12.
Solutions were obtained from the cell wall free space of red light-grown cucumber (Cucumis sativus L.) hypocotyl sections by a low-speed centrifugation technique. The centrifugate contained NAD and peroxidase but no detectable cytoplasmic contamination, as indicated by the absence of the activity of glucose-6-phosphate dehydrogenase from the cell wall solution. Peroxidase activity centrifuged from the cell wall of red light-grown cucumber hypocotyl section could be resolved into at least three cathodic isoforms and two anodic isoforms by isoelectric focusing. Treatment of red light-grown cucumber seedlings with a 10-minute pulse of high-intensity blue light increased the level of cell wall peroxidase by about 60% and caused a qualitative change in the anodic isoforms of this enzyme. The increase in peroxidase activity was detectable within 25 minutes after the start of the blue light pulse, was maximal at 35 minutes, and declined to control levels by 45 minutes of irradiation. The inhibitory effect of blue light on hypocotyl elongation was more rapid than the effect of blue light on total wall peroxidase activity, leading to the conclusion that growth and peroxidase activity are not causally related.  相似文献   

13.
14.
15.
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.  相似文献   

16.
Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.  相似文献   

17.
18.
Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis.  相似文献   

19.
The study was concerned with the effects of irradiation of the sodium humate on its biological activity, which was assessed by the elongation of the hypocotyl and root in young plants of lettuce (Lactuca sativa L. cv. Rapid and cv. Smaragd) growing in the solution of the tested preparation. It was found that its stimulative action on hypocotyl and root elongation in lettuce was changed due to irradiation. However, the degree was dependent on concentration; stimulation mostly decreased, only at some higher concentrations did it increase. Further, experiments showed that there was some interaction between the irradiation of the humate and the cultivar used for testing, but none between the irradiation and the light exposure of plants during the test. The response of the experimental plants to the concentration of the humate depends on the light exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号