首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined recruitment patterns and microhabitat associations for three carnivorous fishes, Plectropomus maculatus, Lutjanus carponotatus and Epinephelus quoyanus, at the Keppel Islands, southern Great Barrier Reef, Australia. Habitat selectivity was highest for recruits that were found mostly with corymbose Acropora, predominantly on patches of live coral located over loose substrates (sand). Adults were more commonly associated with tabular Acropora. The proportion of P. maculatus (72 %) found with live corals was higher than for L. carponotatus (68 %) and E. quoyanus (44 %). Densities of recruits were highly variable among locations, but this was only partly related to availability of preferred microhabitats. Our findings demonstrate that at least some carnivorous reef fishes, especially during early life-history stages, strongly associate with live corals. Such species will be highly sensitive to increasing degradation of coral reef habitats.  相似文献   

2.
Shifts in dominance from corals to macroalgae are occurring in many coral reefs worldwide. Macroalgal canopies, while competing for space with coral colonies, may also form a barrier to herbivorous and corallivorous fish, offering protection to corals. Thus, corals could either suffer from enhanced competition with canopy-forming and understorey macroalgae or benefit from predator exclusion. Here, we tested the hypothesis that the effects of the brown, canopy-forming macroalga, Turbinaria ornata, on the survival and growth of corals can vary according to its cover, to the presence or absence of herbivorous and corallivorous fish and to the morphological types of corals. Over a period of 66 days, two coral species differing in growth form, Acropora pulchra and Porites rus, were exposed to three different covers of T. ornata (absent versus medium versus high), in the presence or absence of fish. Irrespective of the cover of T. ornata, fish exclusion reduced mortality rates of A. pulchra. Following fish exclusion, a high cover of T. ornata depressed the growth of this branched coral, whilst it had no effect when fish species were present. P. rus suffered no damage from corallivorous fish, but its growth was decreased by high covers of T. ornata, irrespective of the presence or absence of fish. These results show that negative effects of T. ornata on some coral species are subordinate to those of fish predation and are, therefore, likely to manifest only on reefs severely depleted of predators. In contrast, space dominance by T. ornata may decrease the growth of other coral species regardless of predation intensity. In general, this study shows that susceptibility to predation may determine the severity of the effects of canopy-forming macroalgae on coral growth.  相似文献   

3.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

4.
Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: ‘coral-dominated’), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (‘rubble-dominated’), and some reefs have high cover of macroalgae (‘macroalgal-dominated’). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile?1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile?1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m?2), compared to coral-dominated reefs (16.8 ± 2.4 m?2) and rubble-dominated reefs (33.1 ± 7.3 m?2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This study identified bottlenecks to recovery of coral assemblages that varied depending on post-disturbance habitat condition.  相似文献   

5.
Vermetid gastropods have the potential to reduce foraging by herbivorous fishes on algae on coral reefs because they produce mucous nets that cover the surfaces of coral skeletons, potentially inhibiting foraging by fishes. We assessed this possibility using both observational and experimental approaches in Moorea, French Polynesia. Foraging rates of herbivorous fishes (total number of bites by all species per minute) were recorded in plots that varied naturally in the cover of vermetid mucous nets. This study, done at six sites, revealed that foraging on algal turf declined with increasing cover of vermetid mucous nets, ranging from ~2 to 22 bites m?2 min?1 at 0 % coverage to 0–5 bites m?2 min?1 at 100 % coverage. The magnitude of this effect of vermetid nets varied among microhabitats (high, mid, and low bommies) and sites, presumably due to variation in the intensity of herbivory. Experimental removal of vermetid mucous nets from plots more than doubled the foraging intensity on turf algae relative to when vermetid nets were present at high (≥70 %) cover. Our results indicate that algal turf on coral reefs may benefit from associational refuge from grazing provided by vermetid gastropods, which might in turn harm corals via increased competition with algal turf.  相似文献   

6.
The juveniles of many reef fishes behave cryptically during critical juvenile stages in their life history and thus the microhabitats they often occupy are not well known. Comprehensive surveys of reef fishes on the temperate mid-west coast of Australia identified that juveniles of the unrelated Epinephelides armatus (Epinephelidae) and Bodianus frenchii (Labridae) < 100 mm total length both exhibit cryptic behaviour by exclusively swimming upside down under cave roofs and ledges. These individuals swam among the sponges and small algae in this microhabitat which would provide refuge from predation and also supply the dietary requirements of these two carnivores. Occupying this microhabitat would also reduce intra-specific competition, as individuals > 150 mm were only observed swimming ventrally oriented to the substrate in caves, under ledges or on open reef. Identifying the nursery habitats of fishery species, such as E. armatus and B. frenchii, is critical for understanding their life histories, but would also inform survey designs aimed at determining recruitment strength or variation.  相似文献   

7.
Population outbreaks of the corallivorous crown-of-thorns starfish, Acanthaster planci, are a major contributor to the decline in coral reef across the Indo-Pacific. The success of A. planci and other reef species in a changing ocean will be influenced by juvenile performance because the naturally high mortality experienced at this sensitive life history stage maybe exacerbated by ocean warming and acidification. We investigated the effects of increased temperature and acidification on growth of newly metamorphosed juvenile A. planci and their feeding rates on crustose coralline algae (CCA) during the initial herbivorous phase of their life history. The juveniles were exposed to three temperature (26, 28, 30 °C) and three pH (NIST scale: 8.1, 7.8, 7.6) levels in a flow-through cross-factorial experiment. There were positive but independent effects of warming and acidification on juvenile growth and feeding. Early juveniles were highly tolerant to moderate increases in temperature (+2 °C above ambient) with the highest growth at 30 °C. Growth and feeding rates of A. planci on CCA were highest at pH 7.6. Thus, ocean warming and acidification may enhance the success of A. planci juveniles. In contrast to its coral prey, at this vulnerable developmental stage, A. planci appears to be highly resilient to future ocean change. Success of juveniles in a future ocean may have carry-over effects into the coral-eating life stage, increasing the threat to coral reef systems.  相似文献   

8.
Coral reefs are undergoing rapid changes as living corals give way to dead coral on which other benthic organisms grow. This decline in live coral could influence habitat availability for fish parasites with benthic life stages. Gnathiid isopod larvae live in the substratum and are common blood-feeding parasites of reef fishes. We examined substrate associations and preferences of a common Caribbean gnathiid, Gnathia marleyi. Emergence traps set over predominantly live coral substrata captured significantly fewer gnathiids than traps set over dead coral substrata. In laboratory experiments, gnathiids preferred dead coral and sponge and tended to avoid contact with live coral. When live gnathiids were added to containers with dead or live coral, significantly fewer were recovered from the latter after 24 h. Our data therefore suggest that live coral is not suitable microhabitat for parasitic gnathiid isopods and that a decrease in live coral cover increases available habitat for gnathiids.  相似文献   

9.
An investigation into the insular shelf and submerged banks surrounding Tutuila, American Samoa, was conducted using a towed camera system. Surveys confirmed the presence of zooxanthellate scleractinian coral communities at mesophotic depths (30–110 m). Quantification of video data, separated into 10-m-depth intervals, yielded a vertical, landward-to-seaward and horizontal distribution of benthic assemblages. Hard substrata composed a majority of bottom cover in shallow water, whereas unconsolidated sediments dominated the deep insular shelf and outer reef slopes. Scleractinian coral cover was highest atop mid-shelf patch reefs and on the submerged bank tops in depths of 30–50 m. Macroalgal cover was highest near shore and on reef slopes approaching the bank tops at 50–60 m. Percent cover of scleractinian coral colony morphology revealed a number of trends. Encrusting corals belonging to the genus Montipora were most abundant at shallow depths with cover gradually decreasing as depth increased. Massive corals, such as Porites spp., displayed a similar trend. Percent cover values of plate-like corals formed a normal distribution, with the highest cover observed in the 60–70 m depth range. Shallow plate-like corals belonged mostly to the genus Acropora and appeared to be significantly prevalent on the northeastern and eastern banks. Deeper plate-like corals on the reef slopes were dominated by Leptoseris, Pachyseris, or Montipora genera. Branching coral cover was high in the 80–110 m depth range. Columnar and free-living corals were also occasionally observed from 40–70 m.  相似文献   

10.

Background

Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances.

Methodology and Principal Findings

In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus bahianus); in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus). On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae.

Significance

This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species-specific effects of herbivorous fishes suggest that a species-rich herbivore fauna can be critical in providing the resilience that reefs need for recovery from common disturbances such as coral bleaching and storm damage.  相似文献   

11.
The process of predation causes significant mortality in coral reef fishes immediately following settlement. However, much of what we know of predator identity is based on a small number of detailed studies. This study aims to identify the key predator of early juvenile coral reef fishes on Ningaloo Reef, North-Western Australia. Video cameras were used to observe patch reefs stocked with newly settled reef fish in the back-reef area between 12:00 and 20:30 h. The cameras were fitted with >610 nm light sources to allow observation in low light conditions. All strikes (attempted and successful) on newly settled fish were recorded, along with the time spent in the vicinity of experimental patch reefs with or without juvenile fish. A total of 69 strikes were observed over the 199 h of recorded video footage, with the majority of strikes occurring mid-afternoon between 13:00 and 15:30 h. Only one strike was observed during the twilight period, an hour either side of sunset (~18:45 h), and no strikes were observed after this period. The moonwrasse, Thalassoma lunare, was responsible for the majority of strikes (75.4 %), with the sandperch (Parapercis clatharatha—10.1 %), spanish flag (Lutjanus carponotatus—5.8 %) and ring wrasse (Hologymnosus annulatus—2.9 %) the next highest contributors. T. lunare also spent significantly more time in the vicinity of reefs stocked with newly settled fish, than those without, during daylight hours. The results of the study are in contrast to the common perception that predation on newly settled fish is focused largely around crepuscular periods and suggests that diurnally active species, in particular T. lunare, are important predators of juvenile fish on the Ningaloo back-reef. The study also implies that generalist species can fulfil key functional roles and that the nature of these roles is not always apparent.  相似文献   

12.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

13.
Coral reefs are characterized by intense herbivory. Spatial patterns in herbivory—particularly along the depth gradient—influence the distribution and abundance of algae. Depth gradients in herbivorous reef fishes are generally assumed to be temporally stable, but this assumption has rarely been questioned. Here, we use underwater visual census and herbivore exclusion experiments to study the community composition and temporal patterns in habitat use by roving herbivorous fishes in an environment characterized by profound seasonal changes in algal biomass and distribution and extreme summer temperatures. Among the 18 species of roving herbivores recorded, parrotfishes were dominant in species richness and biomass, while regional endemic species represented 77 % of the total biomass. During most of the year, roving herbivores aggregate in the shallow reef zones and their biomass declines with depth. The herbivore community on the reef flat is distinct from that in deeper zones. The former is characterized by Siganus rivulatus, Acanthurus gahhm and Hipposcarus harid, while the deeper reef zones are characterized by S. ferrugineus, Chlorurus sordidus and Ctenochaetus striatus. In summer, the distinct community structures among reef zones are lost as reef flat herbivores tend to exploit deeper reef zones and some reef crest species venture on to the reef flat. This summer change in herbivore distribution is also reflected in reduced turf biomass and increased yield to herbivores in the deeper reef zones. Habitat use is related to the feeding mode such that browsers dominate the reef flat and scrapers the reef crest, while the seasonal changes correspond to changes in availability of targeted algal resources. These seasonal changes appear to be driven by the extreme temperatures in summer, reaching 36 °C on the shallow reef flat.  相似文献   

14.
Adult rabbitfishes (Siganidae) differ from most other herbivorous coral reef fishes by forming stable pair bonds throughout their adult lives. However, little is known about the early life stages of rabbitfishes, and no quantitative evidence regarding the ontogeny of pairing behaviour exists to date. This study describes the abundance, distribution and ontogeny of social associations in juvenile rabbitfishes on the mid-shelf reefs around Lizard Island, Great Barrier Reef, Australia. Using underwater visual censuses, we surveyed an area of 5728?m2 across three distinct habitat types, revealing that the abundance of juveniles varies significantly among species, size class and exposure level. Furthermore, we demonstrate a pronounced ontogenetic shift in the social associations of juveniles of Siganus doliatus and Siganus corallinus, changing from primarily solitary individuals in the smallest size class (<50?mm) to predominantly paired individuals in the larger size classes (50–100?mm and 100–150?mm). In this context, we report the presence of several mixed-species pairs of rabbitfishes, providing the first evidence for this behaviour within the family. This supports previous research, which posits that there are strong ecological drivers, rather than a solely reproductive basis, for pairing behaviour in rabbitfishes. Based on our results, we suggest that further exploration of the ecology of early life stages of herbivorous reef fishes will increase our knowledge about ecological processes on coral reefs.  相似文献   

15.
The behavior of marine larvae during and after settlement can help shape the distribution and abundance of benthic juveniles and therefore the intensity of ecological interactions on reefs. Several laboratory choice-chamber experiments were conducted to explore sensory capabilities and behavioral responses to ecological stimuli to better understand habitat selection by “pre-metamorphic” (larval) and “post-metamorphic” (juvenile) stages of a coral reef fish (Thalassoma hardwicke). T. hardwicke larvae were attracted to benthic macroalgae (Turbinaria ornata and Sargassum mangarevasae), while slightly older post-metamorphosed juveniles chose to occupy live coral colonies (Pocillopora damicornis). Habitat choices of larvae were primarily based upon visual cues and were not influenced by the presence of older conspecifics. In contrast, juveniles selected live coral colonies and preferred those occupied by older conspecifics; choices made by juveniles were based upon both visual and olfactory cues from conspecifics. Overall, the laboratory experiments suggest that early life-history stages of T. hardwicke use a range of sensory modalities that vary through ontogeny, to effectively detect and possibly discriminate among different microhabitats for settlement and later occupation. Habitat selection, based upon cues provided by environmental features and/or by conspecifics, might have important consequences for subsequent competitive interactions.  相似文献   

16.
For species with complex life histories such as scleractinian corals, processes occurring early in life can greatly influence the number of individuals entering the adult population. A plethora of studies have examined settlement patterns of coral larvae, mostly on artificial substrata, and the composition of adult corals across multiple spatial and temporal scales. However, relatively few studies have examined the spatial distribution of small (≤50 mm diameter) sexually immature corals on natural reef substrata. We, therefore, quantified the variation in the abundance, composition and size of juvenile corals (≤50 mm diameter) among 27 sites, nine reefs, and three latitudes spanning over 1000 km on Australia’s Great Barrier Reef. Overall, 2801 juveniles were recorded with a mean density of 6.9 (±0.3 SE) ind.m−2, with Acropora, Pocillopora, and Porites accounting for 84.1% of all juvenile corals surveyed. Size-class structure, orientation on the substrate and taxonomic composition of juvenile corals varied significantly among latitudinal sectors. The abundance of juvenile corals varied both within (6–13 ind.m−2) and among reefs (2.8–11.1 ind.m−2) but was fairly similar among latitudes (6.1–8.2 ind.m−2), despite marked latitudinal variation in larval supply and settlement rates previously found at this scale. Furthermore, the density of juvenile corals was negatively correlated with the biomass of scraping and excavating parrotfishes across all sites, revealing a potentially important role of parrotfishes in determining distribution patterns of juvenile corals on the Great Barrier Reef. While numerous studies have advocated the importance of parrotfishes for clearing space on the substrate to facilitate coral settlement, our results suggest that at high biomass they may have a detrimental effect on juvenile coral assemblages. There is, however, a clear need to directly quantify rates of mortality and growth of juvenile corals to understand the relative importance of these mechanisms in shaping juvenile, and consequently adult, coral assemblages.  相似文献   

17.
Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority.  相似文献   

18.
Marginal coral reef systems may provide valuable insights into the nature of ecosystem processes in systems on the trajectory towards a phase shift to an alternate ecosystem state. This study investigates the process of herbivory in a marginal coral reef system in the Keppel Islands at the southern end of the Great Barrier Reef. Branching Acropora coral and the brown macroalga Lobophora variegata occupied up to 95% of the reef crest substratum at the three surveyed reefs. Feeding rates of herbivorous fishes and removal rates of Lobophora were directly quantified within areas of branching Acropora and on planar surfaces. Feeding rates by herbivorous fishes were habitat dependent with the highest bite rates being found in planar habitats for both Lobophora and the epilithic algal matrix (EAM) by 1–2 orders of magnitude, respectively. Feeding rates on Lobophora were, however, much lower than rates on the EAM. The low rates of Lobophora removal and significantly lower rates of herbivory in branching habitats were consistent with the high biomass of this brown alga throughout the Keppel Islands and with its distribution on reef crests, where Lobophora biomass was 20 times greater in branching than in planar habitats. This lack of feeding by herbivorous fishes within branching coral habitats in the Keppel Islands contrasts with the typical role of coral and topographic complexity on herbivores on coral reefs and highlights the potential for complex interactions between algae, corals and fishes on coral reefs. On marginal systems, herbivory may modify algal distributions but may be unable to contain the proliferation of algae such as Lobophora.  相似文献   

19.
Early mortality in cohortsof the coral Pocillopora damicornis (Linnaeus) was monitored under experimental conditions on a reef in order to evaluate effects of sedimentation, grazing, predation and competition. Corals that settled in dishes in the laboratory were placed on the reef flat about 3 days after metamorphosis. Six different conditions were tested in each series of experiments: orientation of dishes (upward, vertical and downward) by with and without protection against potential grazers by covering the dish with a net. Survival of juvenile corals on both protected and unprotected dishes facing upward was lower than in the vertical or downward direction. Under the vertical facing and protected conditions, algal growth was more intensive and algae trapped sediment; mortality of juvenile corals by algae and sedimentation increased gradually. In the uprotected and vertical conditions, algal growth on the surface was removed constantly by grazing invertebrates and fishes and the juvenile corals were removed or killed as well. On the downward facing dishes, survivorship of juveniles was relatively high in both protected and unprotected conditions. This habitat attracted many sessile animals that killed some juveniles by competition. Thus, juvenile corals survived better in experimentally manipulated microhabitats not affected by direct sedimentation, not exposed to direct grazing activity, and not occupied by rapidly growing filamentous algae.  相似文献   

20.
Sexual propagation of corals specifically for reef rehabilitation remains largely experimental. In this study, we refined low technology culture and transplantation approaches and assessed the role of colony size and age, at time of transfer from nursery to reef, on subsequent survival. Larvae from Acropora millepora were reared from gametes and settled on engineered substrates, called coral plug-ins, that were designed to simplify transplantation to areas of degraded reef. Plug-ins, with laboratory spawned and settled coral recruits attached, were maintained in nurseries until they were at least 7 months old before being transplanted to replicate coral limestone outcrops within a marine protected area until they were 31 months old. Survival rates of transplanted corals that remained at the protected in situ nursery the longest were 3.9–5.6 times higher than corals transplanted to the reef earlier, demonstrating that an intermediate ocean nursery stage is critical in the sexual propagation of corals for reef rehabilitation. 3 years post-settlement, colonies were reproductively mature, making this one of few published studies to date to rear a broadcasting scleractinian from eggs to spawning adults. While our data show that it is technically feasible to transplant sexually propagated corals and rear them until maturity, producing a single 2.5-year-old coral on the reef cost at least US$60. ‘What if’ scenarios indicate that the cost per transplantable coral could be reduced by almost 80 %, nevertheless, it is likely that the high cost per coral using sexual propagation methods would constrain delivery of new corals to relatively small scales in many countries with coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号