首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now commonly accepted that non-proteic ligands contribute to the structure and stability of metal-metallothionein (M-MT) species, although this contribution may differ substantially depending on the MT and the metal ions involved. Conversely, literature data are unconnected, lacking correlation studies between the contribution of inorganic ligands to the M-MT complexes and the corresponding CD and UV-vis fingerprints. To contribute towards filling this gap, we have analyzed the influence of chloride anions in the Zn- and Cd-MT complexes of mammalian MT1 and MT4 isoforms. Starting from the initial hypothesis that the shoulders appearing at 240nm in the UV-vis difference spectra during the Cd(II) titrations of Zn-MTs would be indicative of chloride participation in these metal-MT complexes, we can now propose that, while their absence definitely rules out these ligands being involved in metal coordination, their presence should not necessarily be attributed to the formation of metal-Cl bonds. Instead, we identified a global blue shift for the UV-vis difference spectral envelope as the most liable indication of chloride participation in the binding sites of the M-MT species. Following this criterion, we determined that chloride anions are bound to the Cd(7)-MT1 and Cd(4)-alphaMT1 complexes but not in the isostoichiometric Zn complexes, nor in the Zn- or Cd-complexes of the homologous MT4 peptides.  相似文献   

2.
Metallobiomolecules are highly elaborated coordination complexes, and their fundamental metal-ligand interactions are critical components of metalloprotein folding, assembly, stability, electrochemistry, and catalytic function. Herein, we have described the benefits in using Raman spectroscopy to define the metal-ion binding properties of MTs toward metal ions such as Zn(ii) and Cd(ii). In particular, this vibrational technique can shed light on the secondary structures eventually present in MTs and the ligands involved in metal coordination. The oxidation state of Cys residues and their participation in the metal chelation can be clearly defined, as well as the eventual involvement of His residues. With regards to exogenous metal ligands such as sulfide anions, their presence can be identified by some marker bands whose intensity is linearly correlated with sulfide/metal molar ratio. Finally, Raman can be also an useful tool for providing information on the favourite sites of the radical attack and radical-induced modification in protein folding. In conclusion, many advantages such as the capability of defining local regions in large complexes and detecting several structural features at the same time, the ability in supporting mechanisms, as well as the requirement of low sample amount, make to propose Raman spectroscopy, in coupling with analytical techniques such as atomic emission spectroscopy, gas chromatography, and circular dichroism, as one of the most promising experimental strategies in the research on structure-activity relationships in MTs.  相似文献   

3.
Zn- and Cd-complexes of Quercus suber metallothionein (QsMT) were obtained by in vivo-synthesis, in order to obtain physiologically representative aggregates, and characterized by spectrometric and spectroscopic methods. The secondary structure elements and the coordination environments of the metal binding sites of the two aggregates were determined, as well as the main metal-containing species formed. The results obtained from the analysis of the Raman and IR spectra reveal that these metal-MT complexes predominantly contain beta-sheet elements (about 60%), whereas they lack alpha-helices. These structural features slightly depend on the divalent metal bound. In particular, Cd(II) binding to QsMT induces a slight increase of the beta-sheet percentage, as well as a decrease in beta-turn elements with respect to Zn(II) binding. Conversely, the in vivo capability of QsMT to inglobe metal and sulfide ions is metal-depending. Spectroscopic vibrational data also confirm the presence of sulfide ligands in the metal clusters of both Zn- and Cd-QsMT, while the participation of the spacer His residue in metal coordination was only found in Cd-QsMT, in agreement with the CD results. Overall data suggest different coordination environments for Zn(II) and Cd(II) ions in QsMT.  相似文献   

4.
Reaction of Cd7-metallothionein-2 (MT) with Cu(II) ions has been studied by a variety of spectroscopic techniques including UV-absorption, circular dichroism (CD) and luminescence spectroscopy. The addition of up to 5 Cu(II) equivalents to Cd7-MT resulted in a cooperative formation of the monomeric Cd3,Cu5-MT form, as revealed by the analytical data and the presence of isosbestic or isodichroic points in the respective UV and CD spectra. The presence of Cu(I) luminescence and the absence of Cu(II) EPR signal indicated that copper is bound in the Cu(I) oxidation state, i.e., Cd3,Cu(I)5-MT. Consequently, the reduction of Cu(II) ions is accompanied by the oxidation of thiolate ligands of the protein. The absorption features and the luminescence data at 77 K are consistent with the presence of an air-stable Cu(I)-cluster in Cd3,Cu(I)5-MT. The participation of other ligands, besides cysteine thiolates, in metal coordination cannot be ruled out. With more than 5 Cu(II) equivalents added a mixture of unstable MT metalloforms were formed. The concomitant reduction and binding of copper ions by metallated MT represent a new aspect of the MT structure.  相似文献   

5.
Recombinant (E. coli ) synthesis of mammalian MT1 and MT4 domains as separate peptides in Zn(II) and Cd(II) enriched growth media has rendered metal complexes containing sulfide anions as additional ligands. The Cd preparations show higher sulfide content than the Zn preparations. Also, the betaMT1 and betaMT4 fragments exhibit higher sulfide/peptide ratios than the respective alpha fragments. Titration of Zn3-betaMT1 with Cd(II) followed by addition of several sodium sulfide equivalents shows that the Cd(II)-betaMT1 species can incorporate sulfide ligands in vitro, with a concomitant evolution of their UV-vis and CD fingerprints to those characteristic of the Cd-S2- chromophores. Current results have also provided full understanding of previous data collected by this group in the characterization of the Cd-betaMT1 preparations obtained from large-scale fermentor synthesis by allowing identification of at least 2S2- ligands per Cd-betaMT1 species. Furthermore, the results here presented have revealed that synthesis of betaMT4 in Cd-supplemented cultures yielded Cd,S(2-)-containing clusters instead of the proposed heterometallic Zn,Cd-betaMT4 complexes. Finally, a global evaluation of our results suggests that the higher the Cu-thionein character of a MT peptide, the higher is its tendency to harbor nonproteic ligands (i.e., sulfide anions) when building divalent metal clusters, especially Cd-MT complexes.  相似文献   

6.
7.
Zn- and Cu-thioneins: a functional classification for metallothioneins?   总被引:1,自引:0,他引:1  
This report intends to provide the reader with a deeper insight in the chemical, and extensively biological, characteristics of the metallothionein (MT) system. We have devoted nearly 20 years to the study of MTs and this has allowed us to form what we believe is a more complete picture of this peculiar family of metalloproteins. At the beginning of the 1990s, the landscape of this field was quite different from the overall picture we have now. Many researchers have contributed to the readjustment of this part of scientific knowledge. In our case, we implemented a unified method for obtaining MTs, for characterizing their metal-binding features, and for applying a unified research rationale. All this has helped to enlarge the initial picture that was mainly dominated by mammalian MT1/MT2 and yeast Cup1, by introducing approximately 20 new MTs. It has also allowed some characteristics to be clarified and examined in more detail, such as the cooperativity or the coexistence of multiple species in the metal-substitution reactions, the availability of Ag(I) or Cd(II) for use as respective probes for the Cu(I) and Zn(II) binding sites, the participation of chloride or sulfide ligands in the metal coordination spheres, and the feasibility of using in vitro data as representative of in vivo scenarios. Overall, the results yield enough data to consider new criteria for a proposal of classification of MTs based on MT metal-binding features, which complements the previous classifications, and that can shed light on the still controversial physiological functions of this peculiar superfamily of metalloproteins.  相似文献   

8.
Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.  相似文献   

9.
To elucidate the chemical interactions underlying the role of metallothioneins (MTs) in reducing the cytotoxicity caused by MeHg(II), we monitored in parallel by electronic absorption and CD spectroscopies the stepwise addition of MeHgCl stock solution to mammalian Zn(7)-MT1 and the isolated Zn(4)-alphaMT1 and Zn(3)-betaMT1 fragments. The incorporation of MeHg(+) into Zn(7)-MT and Zn(3)-betaMT entails total displacement of Zn(II) and unfolding of the protein. However, both features are only partial for Zn(4)-alphaMT. The different behavior observed for this fragment, whether isolated or constituting one of the two domains of Zn(7)-MT, indicates interdomain interactions in the whole protein. Overall, the binding properties of Zn(7)-MT, Zn(4)-alphaMT and Zn(3)-betaMT toward MeHg(+) are unprecedented. In addition, the sequestration of MeHg(+) by Zn(7)-MT and the concomitant release of Zn(II) are probably two of the main contributions in the detoxifying role of mammalian MT.  相似文献   

10.
The binding of diamagnetic Cd(II) and paramagnetic Co(II) ions to the metal-free form of crab, Cancer pagurus, metallothionein (MT) was studied by various spectroscopic techniques. Both reconstituted and native Cd(II)-MT containing 6 mol Cd(II)/mol protein display electronic absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra which were indistinguishable. The stoichiometric replacement of Cd(II) ions in native Cd(II)6-MT by paramagnetic Co(II) ions enabled the geometry of the metal-binding sites to be probed. The electronic absorption and MCD spectra of Co(II)6-MT revealed features characteristic of distorted tetrahedral tetrathiolate Co(II) coordination for all six metal-binding sites. The stepwise incorporation of Cd(II) and Co(II) ions into this protein was monitored by electronic absorption and CD, and by electronic absorption and EPR spectroscopy, respectively. The results indicate that the metal-thiolate cluster structure is generated when more than four metal ions are bound. Below this titration point separate tetrahedral tetrathiolate complexes exist. This suggests that the cluster formation occurs in a two-step process. Furthermore, the spectroscopic features in both Cd(II)- and Co(II)-metal derivatives above the full metal occupancy of six suggest the existence of one additional metal-binding site. The subsequent loss of one Cd(II) ion from crab Cancer Cd(II)7-MT in the gel filtration studies demonstrate the low metal-binding affinity of the latter site. While the spectroscopic properties indicate an exclusively tetrahedral type of metal-thiolate sulfur coordination for the binding of the first six metal ions, they suggest that the seventh metal ion is coordinated in a different fashion.  相似文献   

11.
Metal selectivity of metal-thiolate clusters in rabbit liver metallothionein (MT) 2 has been studied by examining the metal distribution of two similarly sized divalent metal ions, cobalt and zinc, which have different thiolate affinity. The forms of mixed-metal cluster species in (Co/Zn)7-MT generated with different ratios of both metal ions offered to the metal-free protein were investigated using EPR, ultraviolet/visible absorption and MCD spectroscopy. The results demonstrated that the distribution of these metals between the two metal-thiolate clusters is not random. Thus, the EPR absorption intensities of the bound Co(II) ions in the Zn-cluster matrix increased linearly up to a ratio of Co(II)/Zn(II) equivalents of 3:4, with the final EPR intensity of three non-interacting Co(II)-binding sites. This EPR behaviour is consistent with a binding scheme in which one Co(II) ion occupies a metal-binding site within the three-metal cluster and the remaining two Co(II) ions occupy two distinctly separate sites in the four-metal cluster. With four or more Co(II) ions in the cluster matrix, magnetic coupling between adjacent, sulphur-bridged Co(II) ions was observed. In previous studies on mixed-metal clusters in MT formed with Co(II)/Cd(II), Zn(II)/Cd(II) and Cd(II)/Fe(II), changes in the respective cluster volumes were shown to be a significant factor dictating the widely differing metal distributions in these systems. Based on the results of the current study, it is suggested that both the sizes of the two metal ions and their relative affinities towards the cysteine-thiolate ligands are important in the formation of mixed-metal clusters in MT.  相似文献   

12.
Rabbit 113Cd7-metallothionein-2a (MT) contains two metal-thiolate clusters of three (cluster B) and four (cluster A) metal ions. The 113Cd-n.m.r. spectrum of 113Cd6-MT, isolated from 113Cd7-MT upon treatment with EDTA, is similar to that of 113Cd7-MT, but the cluster B resonances are lower in intensity, suggesting its co-operative metal depletion. (Zn1,113Cd6)-MT, formed upon addition of the Zn(II) ions to 113Cd6-MT, shows 113Cd-n.m.r. features characteristic of cluster B populations containing both Cd(II) and Zn(II) ions. The overall intensity gain of the mixed cluster B resonances per Cd as to those in 113Cd6- and 113Cd7-MT suggests a stabilization effect of the bound Zn(II) ions upon the previously established intramolecular 113Cd exchange within this cluster.  相似文献   

13.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

14.
In this study, autometallography and immunohistochemistry were used to localize and quantify cadmium and metallothionein (MT) levels, respectively, in cellular compartments of turbot liver on exposure to cadmium for 7 days and further depuration treatment for 14 days. Metals weakly bound to proteins (i.e. MTs) in hepatocyte lysosomes were visualized as black silver deposits (BSDs) using a light microscope. With the aid of a newly developed immunohistochemical procedure, MTs were localized and semi-quantified in both the cytosolic and the lysosomal compartments of hepatocytes. The BSD extent in the lysosomes of hepatocytes increased significantly as a result of cadmium exposure. This response was evidenced after 1h. Further, a progressive increase in the volume density of BSDs occurred up to the seventh day. Total MT immunohistochemical levels increased at a lower rate, starting after 1 day of cadmium exposure. BSD extent values recovered after depuration, whilst MT levels remain unchanged. It is possible that the detoxification rate of metals via lysosomes was diminished, whilst MT levels remained unchanged, at least after 14 days of depuration. It can be concluded that autometallography and MT immunohistochemistry are good tools for clarifying metal and metal-MT trafficking routes in hepatocytes, and also that BSD extent and MT immunohistochemical levels in the lysosomes and cytosol of fish hepatocytes can be considered to be useful biomarkers of metal exposure.  相似文献   

15.
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.  相似文献   

16.
Tetrahymena pyriformis MT1 (TpyMT1) is a model among ciliate metallothioneins (MTs). Here, we report on the analytic (ICP-AES, GC-FPD), spectroscopic (CD, UV-Vis, Raman) and spectrometric (ESI-MS) characterization of its recombinant Cd(II)-, Zn(II)- and Cu(I)-complexes, and of those formed during in vitro Zn/Cd and Zn/Cu replacement. In the presence of Cd(II), TpyMT1 renders a major Cd 11-TpyMT1 species, which is also the final step reached in the in vitro Zn/Cd exchange process in Zn 11-TpyMT1. Spectroscopic data supports a different folding of the isostoichiometric Cd 11- and Zn 11-TpyMT1 complexes. Unexpectedly, TpyMT1 biosynthesis in Zn(II)-rich cultures was sensitive to the aeration degree, so that high oxygenation rendered undermetalated, partially-oxidized, complexes (Zn9-TpyMT1). Biosynthesis in Cu(I)-rich media rendered extremely heterogeneous mixtures of CuxZny-species (x+y=8-20), where the higher the aeration, the higher the Zn(II) content. The complexity of these samples was reproduced during the Zn/Cu replacement, as the number of generated species increased gradually with the addition of copper to Zn(11)-TpyMT1. According to our results, a clear preference of TpyMT1 for Cd(II) binding, rather than for Zn(II), and especially Cu(I) can be postulated. This character is totally consistent with the induction pattern of the TpyMT1 gene and the postulated role of TpyMT1 in Cd-detoxification.  相似文献   

17.
Metallothioneins (MTs) are small cysteine-rich proteins which exhibit high affinities for various metal ions and play roles in storage of essential metals and detoxification of toxic metals. Studies on the redox properties of MTs have been quite limited. Recently, we focused on the α-domain of MT (MTα) as a protein matrix and incorporated a tetranuclear metal cluster as a reductant. UV-visible, CD and MS data indicate the formation of the stable tetranuclear metal-cysteine cluster in the MTα matrix with FeII4-MTα and CoII4-MTα species existing in water. Furthermore, the FeII4-MTα species was found to promote the reduction of met-myoglobin and azobenzene derivatives under mild conditions. Particularly, the stoichiometric reduction of methyl red with FeII4-MTα (1:1) was found to proceed with a conversion of 98% over a period of 6 h at 25 °C. This indicates that all of the four Fe(II) cores contribute to the reduction. In this paper, we describe the preparation and reactivity of the tetranuclear iron cluster in the protein matrix.  相似文献   

18.
In contrast with the paradigmatic mammalian metallothioneins (MTs), mollusc MT systems consist at least of a high-cadmium induced form, possibly involved in detoxification, and another isoform either constitutive or regulated by essential metals and probably associated with housekeeping metabolism. With the aim of providing a deeper characterization of the coordination features of a molluscan MT peptide of the latter kind, we have analyzed here the metal-binding abilities of the recombinant MeMT-10-IV isoform of Mytilus edulis (MeMT). Also, comparison with other MTs of this type has been undertaken. A synthetic complementary DNA was constructed, cloned and expressed into two Escherichia coli systems. Upon zinc coordination, MeMT folds in vivo into highly chiral and stable Zn(7) complexes, with an exceptional reluctance to fully substitute cadmium(II) and/or copper(I) for zinc(II). In vivo cadmium binding leads to homometallic Cd(7) complexes that structurally differ from any of the in vitro prepared Cd(7) complexes. Homometallic Cu-MeMT can only be obtained in vitro from Zn(7)-MeMT after a great molar excess of copper(I) has been added. In vivo, two different heterometallic Zn,Cu-MeMT complexes are recovered, which nicely correspond to two distinct stages of the in vitro zinc/copper replacement. These MeMT metal-binding features are consistent with a physiological role related to basal/housekeeping metal, mainly zinc, metabolism, and confirm the correspondence between the MeMT gene response pattern and the functional properties of the encoded protein.  相似文献   

19.
In this study, autometallography and immunohistochemistry were used to localize and quantify cadmium and metallothionein (MT) levels, respectively, in cellular compartments of turbot liver on exposure to cadmium for 7 days and further depuration treatment for 14 days. Metals weakly bound to proteins (i.e. MTs) in hepatocyte lysosomes were visualized as black silver deposits (BSDs) using a light microscope. With the aid of a newly developed immunohistochemical procedure, MTs were localized and semi-quantified in both the cytosolic and the lysosomal compartments of hepatocytes. The BSD extent in the lysosomes of hepatocytes increased significantly as a result of cadmium exposure. This response was evidenced after 1h. Further, a progressive increase in the volume density of BSDs occurred up to the seventh day. Total MT immunohistochemical levels increased at a lower rate, starting after 1 day of cadmium exposure. BSD extent values recovered after depuration, whilst MT levels remain unchanged. It is possible that the detoxification rate of metals via lysosomes was diminished, whilst MT levels remained unchanged, at least after 14 days of depuration. It can be concluded that autometallography and MT immunohistochemistry are good tools for clarifying metal and metal-MT trafficking routes in hepatocytes, and also that BSD extent and MT immunohistochemical levels in the lysosomes and cytosol of fish hepatocytes can be considered to be useful biomarkers of metal exposure.  相似文献   

20.

Background  

The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order to elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号