首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extent of molecular differentiation between domesticated animals or plants and their wild relatives is postulated to be small. The availability of the complete genome sequences of two subspecies of the Asian rice, Oryza sativa (indica and japonica) and their wild relatives have provided an unprecedented opportunity to study divergence following domestication. We observed significantly more amino acid substitutions during rice domestication than can be expected from a comparison among wild species. This excess is disproportionately larger for the more radical kinds of amino acid changes (e.g. Cys<-->Tyr). We estimate that approximately a quarter of the amino acid differences between rice cultivars are deleterious, not accountable by the relaxation of selective constraints. This excess is negatively correlated with the rate of recombination, suggesting that 'hitchhiking' has occurred. We hypothesize that during domestication artificial selection increased the frequency of many deleterious mutations.  相似文献   

2.
The hypothesis that domestication leads to a relaxation of purifying selection on mitochondrial (mt) genomes was tested by comparative analysis of mt genes from dog, pig, chicken, and silkworm. The three vertebrate species showed mt genome phylogenies in which domestic and wild isolates were intermingled, whereas the domestic silkworm (Bombyx mori) formed a distinct cluster nested within its closest wild relative (Bombyx mandarina). In spite of these differences in phylogenetic pattern, significantly greater proportions of nonsynonymous SNPs than of synonymous SNPs were unique to the domestic populations of all four species. Likewise, in all four species, significantly greater proportions of RNA-encoding SNPs than of synonymous SNPs were unique to the domestic populations. Thus, domestic populations were characterized by an excess of unique polymorphisms in two categories generally subject to purifying selection: nonsynonymous sites and RNA-encoding sites. Many of these unique polymorphisms thus seem likely to be slightly deleterious; the latter hypothesis was supported by the generally lower gene diversities of polymorphisms unique to domestic populations in comparison to those of polymorphisms shared by domestic and wild populations.  相似文献   

3.
Accumulation of deleterious mutations in the domestic yak genome   总被引:1,自引:0,他引:1       下载免费PDF全文
X. Xie  Y. Yang  Q. Ren  X. Ding  P. Bao  B. Yan  X. Yan  J. Han  P. Yan  Q. Qiu 《Animal genetics》2018,49(5):384-392
Deleterious mutations play an important functional role, affecting trait phenotypes in ways that decrease the fitness of organisms. Estimating the frequency of occurrence and abundance has been a topic of much interest, especially in crops and livestock. The processes of domestication and breeding allow deleterious mutations to persist at high frequency, and identifying such deleterious mutations is particularly important for breed improvement. Here, we assessed genome‐wide patterns of deleterious variation in 59 domestic and 13 wild yaks using genome resequencing data. Based on the intersection of results given by three methods (provean , polyphen 2 and sift 4g ), we identified 3187 putative deleterious mutation sites affecting 2586 genes in domestic yaks and 2067 affecting 1701 genes in wild yaks. Multiple lines of evidence indicate a significant increase in the load of deleterious mutations in domesticated yaks compared to wild yaks. Private deleterious genes were found to be associated with the perception of smell and detection of chemical stimulus. We also identified 36 genes related to Mendelian genetic diseases involved in sensory perception, skeletal development and the nervous and immune systems. This study not only adds to the understanding of the genetic basis of yak domestication but also provides a rich catalog of variants that will facilitate future breeding‐related research on the yak genome and on other bovid species.  相似文献   

4.
The frozen niche variation hypothesis proposes that asexual clones exploit a fraction of a total resource niche available to the sexual population from which they arise. Differences in niche breadth may allow a period of coexistence between a sexual population and the faster reproducing asexual clones. Here, we model the longer term threat to the persistence of the sexual population from an accumulation of clonal diversity, balanced by the cost to the asexual population resulting from a faster rate of accumulation of deleterious mutations. We use Monte-Carlo simulations to quantify the interaction of niche breadth with accumulating deleterious mutations. These two mechanisms may act synergistically to prevent the extinction of the sexual population, given: (1) sufficient genetic variation, and consequently niche breadth, in the sexual population; (2) a relatively slow rate of accumulation of genetic diversity in the clonal population; (3) synergistic epistasis in the accumulation of deleterious mutations.  相似文献   

5.
We investigate the effect of spatial range expansions on the evolution of fitness when beneficial and deleterious mutations cosegregate. We perform individual‐based simulations of 1D and 2D range expansions and complement them with analytical approximations for the evolution of mean fitness at the edge of the expansion. We find that deleterious mutations accumulate steadily on the wave front during range expansions, thus creating an expansion load. Reduced fitness due to the expansion load is not restricted to the wave front, but occurs over a large proportion of newly colonized habitats. The expansion load can persist and represent a major fraction of the total mutation load for thousands of generations after the expansion. The phenomenon of expansion load may explain growing evidence that populations that have recently expanded, including humans, show an excess of deleterious mutations. To test the predictions of our model, we analyse functional genetic diversity in humans and find patterns that are consistent with our model.  相似文献   

6.
Chun S  Fay JC 《PLoS genetics》2011,7(8):e1002240
Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the distribution of deleterious and neutral amino acid polymorphism in the human genome. Within genomic regions that show evidence of recent hitchhiking, we find fewer neutral but a similar number of deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to neutral SNPs is consistent with simulated hitchhiking events and implies that positive selection eliminates some deleterious alleles and increases the frequency of others. The distribution of disease-associated alleles is also altered in hitchhiking regions. Disease alleles within hitchhiking regions have been associated with auto-immune disorders, metabolic diseases, cancers, and mental disorders. Our results suggest that positive selection has had a significant impact on deleterious polymorphism and may be partly responsible for the high frequency of certain human disease alleles.  相似文献   

7.
Clonally reproducing organisms are expected to accumulate slightly deleterious mutations, and this has been demonstrated in RNA viruses, bacteria and unicellular algae. In this paper we present evidence for increased embryo mortality in obligate parthenogenetic strains of the freshwater flatworm Schmidtea polychroa, possibly indicating the action of deleterious mutations. The inheritance of this fitness defect was tested by crossing parthenogens with sexuals. This is possible because both forms are simultaneous hermaphrodites that produce fertile sperm. The resulting sexual offspring showed significantly increased embryo mortality in comparison to offspring of a sexual × sexual cross. Alternatives to a mutation explanation of these results, like the degeneration of male traits in parthenogens, are being discussed. In conclusion, these results lend support to the hypothesis that sex is advantageous to a multicellular organism because it prevents the accumulation of deleterious mutations.  相似文献   

8.
To examine the impact of genetic neighborhood size and habitat shape on genetic load and the accumulation of deleterious mutation, individual-based simulations were performed in continuously distributed habitats. The risk of extinction increased as both the area of the habitat and the neighborhood size decreased. When the neighborhood area became smaller than the habitat area, habitat shape also began to influence the risk of extinction by mutation loads, expected time to extinction being shorter in longer and narrower habitats than in a square habitat. Both the number of homozygous deleterious loci per individual and the mutation load in the population increased as the neighborhood size and total population size decreased. Neighborhood size and total population size both independently affected the average number of homozygous deleterious loci per individual. In addition, as the ratio of the long to the short side of the rectangle of a habitat increased, the average number of homozygous deleterious loci increased. When the areas of the habitats were held constant, the average number of homozygous loci and the mutation loads were smallest for a regular square and largest for the longest, narrowest habitat. These results suggest that the spatial genetic structure of an individual is an important factor in the accumulation of deleterious mutations and the risk of extinction by mutation meltdown.  相似文献   

9.
Coexistence of sexual and asexual reproduction within the same individual is an intriguing problem, especially when it concerns homothallic haplonts, like the fungus Aspergillus nidulans. In this fungus asexual and sexual offspring have largely identical genotypes. This genetic model organism is an ideal tool to measure possible fitness effects of sex (compared to asex) resulting from causes other than recombination. In this article we show that slightly deleterious mutations accumulate at a lower rate in the sexual pathway than in the asexual pathway. This secondary sex advantage may contribute to the persistence of sexual spores in this fungus. We propose that this advantage results from intra-organismal selection of the fittest gametes or zygotes, which is more stringent in the costly sexual pathway.  相似文献   

10.
Haccou P  Schneider MV 《Genetics》2004,166(2):1093-1104
Mutational load depends not only on the number and nature of mutations but also on the reproductive mode. Traditionally, only a few specific reproductive modes are considered in the search of explanations for the maintenance of sex. There are, however, many alternatives. Including these may give radically different conclusions. The theory on deterministic deleterious mutations states that in large populations segregation and recombination may lead to a lower load of deleterious mutations, provided that there are synergistic interactions. Empirical research suggests that effects of deleterious mutations are often multiplicative. Such situations have largely been ignored in the literature, since recombination and segregation have no effect on mutation load in the absence of epistasis. However, this is true only when clonal reproduction and sexual reproduction with equal male and female ploidy are considered. We consider several alternative reproductive modes that are all known to occur in insects: arrhenotoky, paternal genome elimination, apomictic thelytoky, and automictic thelytoky with different cytological mechanisms to restore diploidy. We give a method that is based on probability-generating functions, which provides analytical and numerical results on the distributions of deleterious mutations. Using this, we show that segregation and recombination do make a difference. Furthermore, we prove that a modified form of Haldane's principle holds more generally for thelytokous reproduction. We discuss the implications of our results for evolutionary transitions between different reproductive modes in insects. Since the strength of Muller's ratchet is reduced considerably for several forms of automictic thelytoky, many of our results are expected to be also valid for initially small populations.  相似文献   

11.
Knowledge and understanding about the selective pressures that have shaped present human genetic diversity have dramatically increased in the last few years in parallel with the availability of large genomic datasets. The release of large datasets composed of millions of SNPs across hundreds of genomes by HAPMAP, the Human Genome Diversity Panel, and other projects has led to considerable effort to detect selection signals across the nuclear genome (Coop et al., 2009, Lopez Herraez et al., 2009, Sabeti et al., 2006, Sabeti et al., 2007, Voight et al., 2006). Most of the research has focused on positive selection forces although other selective forces, such as negative selection, may have played a substantive role on the shape of our genome. Here we studied the selective strengths acting presently on the genome by making computational predictions of the pathogenicity of nonsynonymous protein mutations and interpreting the distribution of scores in terms of selection. We could show that the genetic diversity for all the major pathways is still constrained by negative selection in all 11 human populations studied. In a single exception, we observed a relaxation of negative selection acting on olfactory receptors. Since a decreased number of functioning olfactory receptors in human compared with other primates had already been shown, this suggests that the role of olfactory receptors for survival and reproductive success has decreased during human evolution. By showing that negative selection is still relaxed, the present results imply that no plateau of minimal function has yet been reached in modern humans and therefore that olfactory capability might still be decreasing. This is a first clue to present human evolution.  相似文献   

12.
Allopatric speciation is often assumed to occur as a consequence of adaptive divergence between two isolated populations. However, there are some scenarios in which reproductive isolation can be favored due to accumulated unconditionally deleterious mutations. If deleterious mutations have synergistic epistatic effects, it is shown here that the average fitness of recombinants between two parental lines with a given number of fixed mutations is lower than that of the parents in both the F1 and F2 generations. If individual mutations are only slightly deleterious, then they will tend to fixation at a high enough rate to cause lower hybrid fitness. If the fitness effects of mutation give rise to antagonistic epistasis, the hybrids tend to have a higher average fitness than the parental lines, suggesting a possible scenario for the origin of hybrid vigor. The other model of deleterious mutations investigated is the accumulation of knockout mutants in a duplicated gene family. While neutral in the parental lines, upon contact the F1 and later generations have a significant probability of carrying double knockouts. Under this scenario, selection may also favor reproductive isolation between the two lines. Even when the selection coefficients generated are too low to drive speciation, epistatic interactions between deleterious mutations offer a possible explanation for both outbreeding depression and hybrid vigor.  相似文献   

13.
14.
Cyclically parthenogenetic organisms experience benefits of both sexual and asexual reproductive modes in a constant environment. Sexual reproduction generates new genotypes and may facilitate the purging of deleterious mutations whereas asexuality has a two-fold advantage and enables maintenance of well-fitted genotypes. Asexual reproduction can have a drawback as increased linkage may lead to the accumulation of deleterious mutations. This study presents the results of Monte Carlo simulations of small and infinite diploid populations, with deleterious mutations occurring at multiple loci. The recombination rate and the length of the asexual period, interrupted by sexual reproduction, are allowed to vary. Here I show that the fitness of cyclical parthenogenetic population is dependent on the length of the asexual period. Increased length of the asexual period can lead both to increased segregational load following sexual reproduction and to a stronger effect of deleterious mutations on variation at a linked neutral marker, either by reducing or increasing the variation.  相似文献   

15.
The McDonald-Kreitman test and slightly deleterious mutations   总被引:3,自引:0,他引:3  
It is possible to estimate the proportion of substitutions that are due to adaptive evolution using the numbers of silent and nonsilent polymorphisms and substitutions in a McDonald and Kreitman-type analysis. Unfortunately, this estimate of adaptive evolution is biased downward by the segregation of slightly deleterious mutations. It has been suggested that 1 way to cope with the effects of these slightly deleterious mutations is to remove low-frequency polymorphisms from the analysis. We investigate the performance of this method theoretically. We show that although removing low-frequency polymorphisms does indeed reduce the bias in the estimate of adaptive evolution, the estimate is always downwardly biased, often to the extent that one would not be able to detect adaptive evolution, even if it existed. The method is reasonably satisfactory, only if the rate of adaptive evolution is high and the distribution of fitness effects for slightly deleterious mutations is very leptokurtic. Our analysis suggests that adaptive evolution could be quite prevalent in humans (>8%) and still not be detectable using current methodologies. Our analysis also suggests that the level of adaptive evolution has probably been underestimated, possibly substantially, in both bacteria and Drosophila.  相似文献   

16.
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.  相似文献   

17.
Monosomy for the X chromosome in humans creates a genetic Achilles' heel for nature to deal with. We report that the human X chromosome appears to have one-third the density of the coding sequence of the autosomes and, because of partial shielding from the high mutation rate of the male sex, that it should also have a lower mutation rate than the autosomes (i.e.,.73). Hence, the X chromosome should contribute one quarter (.33x.73=.24) of the deleterious mutations expected from its DNA content. In this way, selection has possibly moderated risks from mutation in X-linked genes that are thought to have been fixed in their syntenic state since the onset of the mammalian lineage. The unexpected difference in the density of coding sequences indicates that our recent, hemophilia B-based estimate of the rate of deleterious mutations per zygote should be increased from 1.3 to 4 (1.3x3).  相似文献   

18.
19.
Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to predict how negative selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect LD decay, due to the complex interplay of different evolutionary effects. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous variants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes more than synonymous variants. This result holds when controlling for potential confounding factors by matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that nonsynonymous derived alleles tend to be located on different haplotypes more often than are synonymous derived alleles. Our findings suggest that interference may play a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influences genome-wide patterns of LD.  相似文献   

20.
Jiang X  Xu Z  Li J  Shi Y  Wu W  Tao S 《PloS one》2011,6(11):e27757
We study the dynamics of adaptation in asexual populations that undergo both beneficial and deleterious mutations. In particular, how the deleterious mutations affect the fixation of beneficial mutations was investigated. Using extensive Monte Carlo simulations, we find that in the "strong-selection weak mutation (SSWM)" regime or in the "clonal interference (CI)" regime, deleterious mutations rarely influence the distribution of "selection coefficients of the fixed mutations (SCFM)"; while in the "multiple mutations" regime, the accumulation of deleterious mutations would lead to a decrease in fitness significantly. We conclude that the effects of deleterious mutations on adaptation depend largely on the supply of beneficial mutations. And interestingly, the lowest adaptation rate occurs for a moderate value of selection coefficient of deleterious mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号