首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bayesian mapping of quantitative trait loci for complex binary traits   总被引:13,自引:0,他引:13  
Yi N  Xu S 《Genetics》2000,155(3):1391-1403
A complex binary trait is a character that has a dichotomous expression but with a polygenic genetic background. Mapping quantitative trait loci (QTL) for such traits is difficult because of the discrete nature and the reduced variation in the phenotypic distribution. Bayesian statistics are proved to be a powerful tool for solving complicated genetic problems, such as multiple QTL with nonadditive effects, and have been successfully applied to QTL mapping for continuous traits. In this study, we show that Bayesian statistics are particularly useful for mapping QTL for complex binary traits. We model the binary trait under the classical threshold model of quantitative genetics. The Bayesian mapping statistics are developed on the basis of the idea of data augmentation. This treatment allows an easy way to generate the value of a hypothetical underlying variable (called the liability) and a threshold, which in turn allow the use of existing Bayesian statistics. The reversible jump Markov chain Monte Carlo algorithm is used to simulate the posterior samples of all unknowns, including the number of QTL, the locations and effects of identified QTL, genotypes of each individual at both the QTL and markers, and eventually the liability of each individual. The Bayesian mapping ends with an estimation of the joint posterior distribution of the number of QTL and the locations and effects of the identified QTL. Utilities of the method are demonstrated using a simulated outbred full-sib family. A computer program written in FORTRAN language is freely available on request.  相似文献   

2.
Yuan Z  Zou F  Liu Y 《Genetics》2011,188(1):189-195
The Collaborative Cross (CC) is a renewable mouse resource that mimics the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures to those of F(2) individuals. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice do not typically share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical modeling to avoid a large number of false positive findings. For complex traits, mapping multiple genes simultaneously is arguably more powerful than mapping one gene at a time. In this article, we describe how we have developed a Bayesian quantitative trait locus (QTL) mapping method that simultaneously deals with the special genetic architecture of RIX and maps multiple genes. The performance of the proposed method is evaluated by extensive simulations. In addition, for a given set of RI lines, there are numerous ways to generate RIX samples. To provide a general guideline on future RIX studies, we compare several RIX designs through simulations.  相似文献   

3.
Yi N  Banerjee S  Pomp D  Yandell BS 《Genetics》2007,176(3):1855-1864
Development of statistical methods and software for mapping interacting QTL has been the focus of much recent research. We previously developed a Bayesian model selection framework, based on the composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this study we extend the composite model space approach to complex ordinal traits in experimental crosses. We jointly model main and epistatic effects of QTL and environmental factors on the basis of the ordinal probit model (also called threshold model) that assumes a latent continuous trait underlies the generation of the ordinal phenotypes through a set of unknown thresholds. A data augmentation approach is developed to jointly generate the latent data and the thresholds. The proposed ordinal probit model, combined with the composite model space framework for continuous traits, offers a convenient way for genomewide interacting QTL analysis of ordinal traits. We illustrate the proposed method by detecting new QTL and epistatic effects for an ordinal trait, dead fetuses, in a F(2) intercross of mice. Utility and flexibility of the method are also demonstrated using a simulated data set. Our method has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of the Bayesian methodology for genomewide interacting QTL analysis for continuous, binary, and ordinal traits in experimental crosses.  相似文献   

4.
Huang H  Eversley CD  Threadgill DW  Zou F 《Genetics》2007,176(4):2529-2540
A Bayesian methodology has been developed for multiple quantitative trait loci (QTL) mapping of complex binary traits that follow liability threshold models. Unlike most QTL mapping methods where only one or a few markers are used at a time, the proposed method utilizes all markers across the genome simultaneously. The outperformance of our Bayesian method over the traditional single-marker analysis and interval mapping has been illustrated via simulations and real data analysis to identify candidate loci associated with colorectal cancer.  相似文献   

5.
Bayesian LASSO for quantitative trait loci mapping   总被引:6,自引:1,他引:6       下载免费PDF全文
Yi N  Xu S 《Genetics》2008,179(2):1045-1055
The mapping of quantitative trait loci (QTL) is to identify molecular markers or genomic loci that influence the variation of complex traits. The problem is complicated by the facts that QTL data usually contain a large number of markers across the entire genome and most of them have little or no effect on the phenotype. In this article, we propose several Bayesian hierarchical models for mapping multiple QTL that simultaneously fit and estimate all possible genetic effects associated with all markers. The proposed models use prior distributions for the genetic effects that are scale mixtures of normal distributions with mean zero and variances distributed to give each effect a high probability of being near zero. We consider two types of priors for the variances, exponential and scaled inverse-chi(2) distributions, which result in a Bayesian version of the popular least absolute shrinkage and selection operator (LASSO) model and the well-known Student's t model, respectively. Unlike most applications where fixed values are preset for hyperparameters in the priors, we treat all hyperparameters as unknowns and estimate them along with other parameters. Markov chain Monte Carlo (MCMC) algorithms are developed to simulate the parameters from the posteriors. The methods are illustrated using well-known barley data.  相似文献   

6.
Complex traits important for humans are often correlated phenotypically and genetically. Joint mapping of quantitative-trait loci (QTLs) for multiple correlated traits plays an important role in unraveling the genetic architecture of complex traits. Compared with single-trait analysis, joint mapping addresses more questions and has advantages for power of QTL detection and precision of parameter estimation. Some statistical methods have been developed to map QTLs underlying multiple traits, most of which are based on maximum-likelihood methods. We develop here a multivariate version of the Bayes methodology for joint mapping of QTLs, using the Markov chain-Monte Carlo (MCMC) algorithm. We adopt a variance-components method to model complex traits in outbred populations (e.g., humans). The method is robust, can deal with an arbitrary number of alleles with arbitrary patterns of gene actions (such as additive and dominant), and allows for multiple phenotype data of various types in the joint analysis (e.g., multiple continuous traits and mixtures of continuous traits and discrete traits). Under a Bayesian framework, parameters--including the number of QTLs--are estimated on the basis of their marginal posterior samples, which are generated through two samplers, the Gibbs sampler and the reversible-jump MCMC. In addition, we calculate the Bayes factor related to each identified QTL, to test coincident linkage versus pleiotropy. The performance of our method is evaluated in simulations with full-sib families. The results show that our proposed Bayesian joint-mapping method performs well for mapping multiple QTLs in situations of either bivariate continuous traits or mixed data types. Compared with the analysis for each trait separately, Bayesian joint mapping improves statistical power, provides stronger evidence of QTL detection, and increases precision in estimation of parameter and QTL position. We also applied the proposed method to a set of real data and detected a coincident linkage responsible for determining bone mineral density and areal bone size of wrist in humans.  相似文献   

7.
Yi N  Shriner D 《Heredity》2008,100(3):240-252
Many complex human diseases and traits of biological and/or economic importance are determined by interacting networks of multiple quantitative trait loci (QTL) and environmental factors. Mapping QTL is critical for understanding the genetic basis of complex traits, and for ultimate identification of genes responsible. A variety of sophisticated statistical methods for QTL mapping have been developed. Among these developments, the evolution of Bayesian approaches for multiple QTL mapping over the past decade has been remarkable. Bayesian methods can jointly infer the number of QTL, their genomic positions and their genetic effects. Here, we review recently developed and still developing Bayesian methods and associated computer software for mapping multiple QTL in experimental crosses. We compare and contrast these methods to clearly describe the relationships among different Bayesian methods. We conclude this review by highlighting some areas of future research.  相似文献   

8.
Kao CH 《Genetics》2004,167(4):1987-2002
Endosperm traits are trisomic inheritant and are of great economic importance because they are usually directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods (diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to broadly use the marker information either from only the maternal plants or from both the maternal plants and their embryos in the backcross and F2 populations for mapping endosperm traits. Due to the use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can provide better detection power and estimation precision, and as shown in this article it is capable of analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and current triploid methods using only one (or two) interval(s). Several important issues in endosperm trait mapping, such as the relation and differences between the diploid and triploid methods, variance components of genetic variation, and the problems if effects are present and ignored, are also addressed. Simulations are performed to further explore these issues, to investigate the relative efficiency of different experimental designs, and to evaluate the performance of the proposed and current methods in mapping endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain quality in crop science. The triploid MIM FORTRAN program for mapping endosperm traits is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).  相似文献   

9.
Sillanpää MJ  Arjas E 《Genetics》1999,151(4):1605-1619
A general fine-scale Bayesian quantitative trait locus (QTL) mapping method for outcrossing species is presented. It is suitable for an analysis of complete and incomplete data from experimental designs of F2 families or backcrosses. The amount of genotyping of parents and grandparents is optional, as well as the assumption that the QTL alleles in the crossed lines are fixed. Grandparental origin indicators are used, but without forgetting the original genotype or allelic origin information. The method treats the number of QTL in the analyzed chromosome as a random variable and allows some QTL effects from other chromosomes to be taken into account in a composite interval mapping manner. A block-update of ordered genotypes (haplotypes) of the whole family is sampled once in each marker locus during every round of the Markov Chain Monte Carlo algorithm used in the numerical estimation. As a byproduct, the method gives the posterior distributions for linkage phases in the family and therefore it can also be used as a haplotyping algorithm. The Bayesian method is tested and compared with two frequentist methods using simulated data sets, considering two different parental crosses and three different levels of available parental information. The method is implemented as a software package and is freely available under the name Multimapper/outbred at URL http://www.rni.helsinki.fi/mjs/.  相似文献   

10.
Genomic imprinting, an epigenetic phenomenon of parent-of-origin-specific gene expression, has been widely observed in plants, animals, and humans. To detect imprinting genes influencing quantitative traits, the least squares and maximum likelihood approaches for fitting a single quantitative trait locus (QTL) and Bayesian methods for simultaneously modeling multiple QTL have been adopted, respectively, in various studies. However, most of these studies have only estimated imprinting main effects and thus ignored imprinting epistatic effects. In the presence of extremely complex genomic imprinting architectures, we introduce a Bayesian model selection method to analyze the multiple interacting imprinted QTL (iQTL) model. This approach will greatly enhance the computational efficiency through setting the upper bound of the number of QTLs and performing selective sampling for QTL parameters. The imprinting types of detected main-effect QTLs can be estimated from the Bayes factor statistic formulated by the posterior probabilities for the genetic effects being compared. The performance of the proposed method is demonstrated by several simulation experiments. Moreover, this method is applied to dissect the imprinting genetic architecture for body weight in mouse and fruit weight in tomato. Matlab code for implementing this approach will be available from the authors upon request.  相似文献   

11.
M J Sillanp??  E Arjas 《Genetics》1998,148(3):1373-1388
A novel fine structure mapping method for quantitative traits is presented. It is based on Bayesian modeling and inference, treating the number of quantitative trait loci (QTLs) as an unobserved random variable and using ideas similar to composite interval mapping to account for the effects of QTLs in other chromosomes. The method is introduced for inbred lines and it can be applied also in situations involving frequent missing genotypes. We propose that two new probabilistic measures be used to summarize the results from the statistical analysis: (1) the (posterior) QTL intensity, for estimating the number of QTLs in a chromosome and for localizing them into some particular chromosomal regions, and (2) the locationwise (posterior) distributions of the phenotypic effects of the QTLs. Both these measures will be viewed as functions of the putative QTL locus, over the marker range in the linkage group. The method is tested and compared with standard interval and composite interval mapping techniques by using simulated backcross progeny data. It is implemented as a software package. Its initial version is freely available for research purposes under the name Multimapper at URL http://www.rni.helsinki.fi/mjs.  相似文献   

12.
Che X  Xu S 《Heredity》2012,109(1):41-49
Many biological traits are discretely distributed in phenotype but continuously distributed in genetics because they are controlled by multiple genes and environmental variants. Due to the quantitative nature of the genetic background, these multiple genes are called quantitative trait loci (QTL). When the QTL effects are treated as random, they can be estimated in a single generalized linear mixed model (GLMM), even if the number of QTL may be larger than the sample size. The GLMM in its original form cannot be applied to QTL mapping for discrete traits if there are missing genotypes. We examined two alternative missing genotype-handling methods: the expectation method and the overdispersion method. Simulation studies show that the two methods are efficient for multiple QTL mapping (MQM) under the GLMM framework. The overdispersion method showed slight advantages over the expectation method in terms of smaller mean-squared errors of the estimated QTL effects. The two methods of GLMM were applied to MQM for the female fertility trait of wheat. Multiple QTL were detected to control the variation of the number of seeded spikelets.  相似文献   

13.
 Segregating quantitative trait loci can be detected via linkage to genetic markers. By selectively genotyping individuals with extreme phenotypes for the quantitative trait, the power per individual genotyped is increased at the expense of the power per individual phenotyped, but linear-model estimates of the quantitative-locus effect will be biased. The properties of single- and multiple-trait maximum-likelihood estimates of quantitative-loci parameters derived from selectively genotyped samples were investigated using Monte-Carlo simulations of backcross populations. All individuals with trait records were included in the analyses. All quantitative-locus parameters and the residual correlation were unbiasedly estimated by multiple-trait maximum-likelihood methodology. With single-trait maximum-likelihood, unbiased estimates for quantitative-locus effect and location, and the residual variance, were obtained for the trait under selection, but biased estimates were derived for a correlated trait that was analyzed separately. When an effect of the QTL was simulated only on the trait under selection, a “ghost” effect was also found for the correlated trait. Furthermore, if an effect was simulated only for the correlated trait, then the statistical power was less than that obtained with a random sample of equal size. With multiple-trait analyses, the power of quantitative-trait locus detection was always greater with selective genotyping. Received: 23 February 1998 / Accepted: 15 May 1998  相似文献   

14.
A Huang  S Xu  X Cai 《Heredity》2015,114(1):107-115
In multiple quantitative trait locus (QTL) mapping, a high-dimensional sparse regression model is usually employed to account for possible multiple linked QTLs. The QTL model may include closely linked and thus highly correlated genetic markers, especially when high-density marker maps are used in QTL mapping because of the advancement in sequencing technology. Although existing algorithms, such as Lasso, empirical Bayesian Lasso (EBlasso) and elastic net (EN) are available to infer such QTL models, more powerful methods are highly desirable to detect more QTLs in the presence of correlated QTLs. We developed a novel empirical Bayesian EN (EBEN) algorithm for multiple QTL mapping that inherits the efficiency of our previously developed EBlasso algorithm. Simulation results demonstrated that EBEN provided higher power of detection and almost the same false discovery rate compared with EN and EBlasso. Particularly, EBEN can identify correlated QTLs that the other two algorithms may fail to identify. When analyzing a real dataset, EBEN detected more effects than EN and EBlasso. EBEN provides a useful tool for inferring high-dimensional sparse model in multiple QTL mapping and other applications. An R software package ‘EBEN'' implementing the EBEN algorithm is available on the Comprehensive R Archive Network (CRAN).  相似文献   

15.
Yi N  Xu S 《Genetics》2001,157(4):1759-1771
Quantitative trait loci (QTL) are easily studied in a biallelic system. Such a system requires the cross of two inbred lines presumably fixed for alternative alleles of the QTL. However, development of inbred lines can be time consuming and cost ineffective for species with long generation intervals and severe inbreeding depression. In addition, restriction of the investigation to a biallelic system can sometimes be misleading because many potentially important allelic interactions do not have a chance to express and thus fail to be detected. A complicated mating design involving multiple alleles mimics the actual breeding system. However, it is difficult to develop the statistical model and algorithm using the classical maximum-likelihood method. In this study, we investigate the application of a Bayesian method implemented via the Markov chain Monte Carlo (MCMC) algorithm to QTL mapping under arbitrarily complicated mating designs. We develop the method under a mixed-model framework where the genetic values of founder alleles are treated as random and the nongenetic effects are treated as fixed. With the MCMC algorithm, we first draw the gene flows from the founders to the descendants for each QTL and then draw samples of the genetic parameters. Finally, we are able to simultaneously infer the posterior distribution of the number, the additive and dominance variances, and the chromosomal locations of all identified QTL.  相似文献   

16.
In most quantitative trait loci (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection, leading to detection of false positive QTL. To improve the robustness of QTL mapping methods, we replace the normal distribution assumption for residuals in a multiple QTL model with a Student-t distribution that is able to accommodate residual outliers. A Robust Bayesian mapping strategy is proposed on the basis of the Bayesian shrinkage analysis for QTL effects. The simulations show that Robust Bayesian mapping approach can substantially increase the power of QTL detection when the normality assumption does not hold and applying it to data already normally distributed does not influence the result. The proposed QTL mapping method is applied to mapping QTL for the traits associated with physics–chemical characters and quality in rice. Similarly to the simulation study in the real data case the robust approach was able to detect additional QTLs when compared to the traditional approach. The program to implement the method is available on request from the first or the corresponding author. Xin Wang and Zhongze Piao contributed equally to this study.  相似文献   

17.
Controlling the false discovery rate (FDR) has been proposed as an alternative to controlling the genome-wise error rate (GWER) for detecting quantitative trait loci (QTL) in genome scans. The objective here was to implement FDR in the context of regression interval mapping for multiple traits. Data on five traits from an F2 swine breed cross were used. FDR was implemented using tests at every 1 cM (FDR1) and using tests with the highest test statistic for each marker interval (FDRm). For the latter, a method was developed to predict comparison-wise error rates. At low error rates, FDR1 behaved erratically; FDRm was more stable but gave similar significance thresholds and number of QTL detected. At the same error rate, methods to control FDR gave less stringent significance thresholds and more QTL detected than methods to control GWER. Although testing across traits had limited impact on FDR, single-trait testing was recommended because there is no theoretical reason to pool tests across traits for FDR. FDR based on FDRm was recommended for QTL detection in interval mapping because it provides significance tests that are meaningful, yet not overly stringent, such that a more complete picture of QTL is revealed.  相似文献   

18.
Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes.  相似文献   

19.
The interval mapping method is widely used for the genetic mapping of quantitative trait loci (QTLs), though true resolution of quantitative variation into QTLs is hampered with this method. Separation of QTLs is troublesome, because single-QTL is models are fitted. Further, genotype-by-environment interaction, which is of great importance in many quantitative traits, can only be approached by separately analyzing the data collected in multiple environments. Here, we demonstrate for the first time a novel analytic approach (MQM mapping) that accommodates both the mapping of multiple QTLs and genotype-by-environment interaction. MQM mapping is compared to interval mapping in the mapping of QTLs for flowering time in Arabidopsis thaliana under various photoperiod and vernalization conditions.  相似文献   

20.
T Qi  B Jiang  Z Zhu  C Wei  Y Gao  S Zhu  H Xu  X Lou 《Heredity》2014,113(3):224-232
The crop seed is a complex organ that may be composed of the diploid embryo, the triploid endosperm and the diploid maternal tissues. According to the genetic features of seed characters, two genetic models for mapping quantitative trait loci (QTLs) of crop seed traits are proposed, with inclusion of maternal effects, embryo or endosperm effects of QTL, environmental effects and QTL-by-environment (QE) interactions. The mapping population can be generated either from double back-cross of immortalized F2 (IF2) to the two parents, from random-cross of IF2 or from selfing of IF2 population. Candidate marker intervals potentially harboring QTLs are first selected through one-dimensional scanning across the whole genome. The selected candidate marker intervals are then included in the model as cofactors to control background genetic effects on the putative QTL(s). Finally, a QTL full model is constructed and model selection is conducted to eliminate false positive QTLs. The genetic main effects of QTLs, QE interaction effects and the corresponding P-values are computed by Markov chain Monte Carlo algorithm for Gaussian mixed linear model via Gibbs sampling. Monte Carlo simulations were performed to investigate the reliability and efficiency of the proposed method. The simulation results showed that the proposed method had higher power to accurately detect simulated QTLs and properly estimated effect of these QTLs. To demonstrate the usefulness, the proposed method was used to identify the QTLs underlying fiber percentage in an upland cotton IF2 population. A computer software, QTLNetwork-Seed, was developed for QTL analysis of seed traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号