首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of action of gabapentin is still not well understood. It binds to the α2δ-1 and α2δ-2 subunits of voltage-gated calcium channels but has little acute effect on calcium currents in several systems. However, our recent results conclusively demonstrated that gabapentin inhibited calcium currents when applied chronically but not acutely, both in heterologous expression systems and in dorsal root ganglion neurons 1. In that study we only examined a 40 hour time point of incubation with gabapentin, and here we have extended these results to include the effect of up to 6 and 20 hours incubation with gabapentin on calcium channel currents formed from CaV2.1/β4/α2δ-2 subunits. Gabapentin was significantly effective to inhibit the currents if included for 17-20 hours prior to recording, but it did not produce a significant inhibition if included for 3-6 hours. We previously concluded that gabapentin acts primarily at an intracellular location, requiring uptake into cells. However, this effect is mediated by α2δ subunits, being prevented by mutations in either α2δ-1 or α2δ-2 that abolish gabapentin binding 1. Furthermore, we also showed that the trafficking of α2δ-2 and CaV2 channels was disrupted by gabapentin. Here we have also extended that study, to show that the cell-surface expression of CaV2.1 is not reduced by chronic gabapentin if it is co-expressed with α2δ-2 containing a point mutation (R282A) that prevents gabapentin binding  相似文献   

2.
3.
Calcium channels must be subjected to a very precise regulation in order to preserve cell function and viability. Voltage gated calcium channels (VGCC) represent the main pathway for calcium entry in excitable cells. This explains why depolarization induces a rapid-onset and short-term inactivation of calcium currents. Contrarily to this well-documented mechanism to maintain calcium below toxic levels, the regulatory pathways inducing longer-lasting changes and cell surface expression of functional calcium channels are largely unknown. Since calcium is a main player in the activity-dependent regulation of many genes, we hypothesize that calcium channel coding genes could be also subjected to activity-dependent regulation. We have used prolonged depolarization to analyze the effects of sustained intracellular calcium elevation on the mRNAs coding for the different alpha(1) pore-forming subunits of the calcium channels expressed in chromaffin cells. Our findings reveal that persistent depolarization is accompanied by a prolonged intracellular calcium elevation and reduction of calcium current. This calcium current inhibition could be mediated, at least partially, by the downregulation of the mRNAs coding for several alpha(1) subunits. Thus, we show here that depolarization inhibits the expression of Ca(V)1.1, Ca(V)1.2, Ca(V)1.3, Ca(V)2.2 and Ca(V)2.3 mRNAs, while the Ca(V)2.1 mRNA remains unmodified. Moreover, such downregulation of channels depends on calcium entry through the L-type calcium channel, as both mRNA and calcium current changes induced by depolarization are abrogated by L-type channel specific blockers.  相似文献   

4.
Voltage-activated calcium channels can be divided into two subgroups based on their activation threshold, low-voltage-activated (LVA) and high-voltage-activated (HVA). Auxiliary subunits of the HVA calcium channels contribute significantly to biophysical properties of the channels. We have cloned and characterized members of two families of auxiliary subunits: alpha2delta and gamma. Two new alpha2delta subunits, alpha2delta-2 and alpha2delta-3, regulate all classes of HVA calcium channels. While the ubiquitous alpha2delta-2 modulates both neuronal and non-neuronal channels with similar efficiency, the alpha2delta-3 subunit regulates Ca(v)2.3 channels more effectively. Furthermore, alpha2delta-2 may modulate the LVA Ca(v)3.1 channel. Four new gamma subunits, gamma-2, gamma-3, gamma-4 and gamma-5, were characterized. The gamma-2 subunit modulated both the non-neuronal Ca(v)1.2 channel and the neuronal Ca(v)2.1 channel. The gamma-4 subunit affected only the Ca(v)2.1 channel. The gamma-5 subunit may be a regulatory subunit of the LVA Ca(v)3.1 channel. The Ca(v)1.2 channel is a major target for treatment of cardiovascular diseases. We have mapped the interaction site for clinically important channel blockers - dihydropyridines (DHPs) - and analysed the underlying inhibition mechanism. High-affinity inhibition is characterized by interaction with inactivated state of the channel. Its structural determinants are amino acids of the IVS6 segment, with smaller contribution of the IS6 segment, which contributes to voltage-dependence of DHP inhibition. Removal of amino acids responsible for the high-affinity inhibition revealed a low-affinity open channel block, in which amino acids of the IIIS5 and IIIS6 segments take part. Experiments with a permanently charged DHP suggested that there is another low-affinity interaction site on the alpha(1) subunit. We have cloned and characterized murine neuronal LVA Ca(v)3.1 channel. The channel has high sensitivity to the organic blocker mibefradil, moderate sensitivity to phenytoin, and low sensitivity to ethosuximide, amiloride and valproat. The channel is insensitive to tetrodotoxin and DHPs. The inorganic blockers Ni2+ and Cd2+ are moderately effective compared to La3+. The current through the Ca(v)3.1 channel inactivates faster with Ba2+ compared to Ca2+. Molecular determinants of fast inactivation are located in amino side of the intracellular carboxy terminus. The voltage dependence of charge movement is very shallow compared to the voltage dependence of current activation. Transfer of 30 % of charge correlates with activation of 70 % of measurable macroscopic current. Prolonged depolarization does not immobilize charge movement of the Ca(v)3.1 channel.  相似文献   

5.
We have positionally cloned and characterized a new calcium channel auxiliary subunit, alpha(2)delta-2 (CACNA2D2), which shares 56% amino acid identity with the known alpha(2)delta-1 subunit. The gene maps to the critical human tumor suppressor gene region in chromosome 3p21.3, showing very frequent allele loss and occasional homozygous deletions in lung, breast, and other cancers. The tissue distribution of alpha(2)delta-2 expression is different from alpha(2)delta-1, and alpha(2)delta-2 mRNA is most abundantly expressed in lung and testis and well expressed in brain, heart, and pancreas. In contrast, alpha(2)delta-1 is expressed predominantly in brain, heart, and skeletal muscle. When co-expressed (via cRNA injections) with alpha(1B) and beta(3) subunits in Xenopus oocytes, alpha(2)delta-2 increased peak size of the N-type Ca(2+) currents 9-fold, and when co-expressed with alpha(1C) or alpha(1G) subunits in Xenopus oocytes increased peak size of L-type channels 2-fold and T-type channels 1.8-fold, respectively. Anti-peptide antibodies detect the expression of a 129-kDa alpha(2)delta-2 polypeptide in some but not all lung tumor cells. We conclude that the alpha(2)delta-2 gene encodes a functional auxiliary subunit of voltage-gated Ca(2+) channels. Because of its chromosomal location and expression patterns, CACNA2D2 needs to be explored as a potential tumor suppressor gene linking Ca(2+) signaling and lung, breast, and other cancer pathogenesis. The homologous location on mouse chromosome 9 is also the site of the mouse neurologic mutant ducky (du), and thus, CACNA2D2 is also a candidate gene for this inherited idiopathic generalized epilepsy syndrome.  相似文献   

6.
Voltage-dependent L-type Ca(2+) (Ca(V)1.2) channels are the principal Ca(2+) entry pathway in arterial myocytes. Ca(V)1.2 channels regulate multiple vascular functions and are implicated in the pathogenesis of human disease, including hypertension. However, the molecular identity of Ca(V)1.2 channels expressed in myocytes of myogenic arteries that regulate vascular pressure and blood flow is unknown. Here, we cloned Ca(V)1.2 subunits from resistance size cerebral arteries and demonstrate that myocytes contain a novel, cysteine rich N terminus that is derived from exon 1 (termed "exon 1c"), which is located within CACNA1C, the Ca(V)1.2 gene. Quantitative PCR revealed that exon 1c was predominant in arterial myocytes, but rare in cardiac myocytes, where exon 1a prevailed. When co-expressed with alpha(2)delta subunits, Ca(V)1.2 channels containing the novel exon 1c-derived N terminus exhibited: 1) smaller whole cell current density, 2) more negative voltages of half activation (V(1/2,act)) and half-inactivation (V(1/2,inact)), and 3) reduced plasma membrane insertion, when compared with channels containing exon 1b. beta(1b) and beta(2a) subunits caused negative shifts in the V(1/2,act) and V(1/2,inact) of exon 1b-containing Ca(V)1.2alpha(1)/alpha(2)delta currents that were larger than those in exon 1c-containing Ca(V)1.2alpha(1)/alpha(2)delta currents. In contrast, beta(3) similarly shifted V(1/2,act) and V(1/2,inact) of currents generated by exon 1b- and exon 1c-containing channels. beta subunits isoform-dependent differences in current inactivation rates were also detected between N-terminal variants. Data indicate that through novel alternative splicing at exon 1, the Ca(V)1.2 N terminus modifies regulation by auxiliary subunits. The novel exon 1c should generate distinct voltage-dependent Ca(2+) entry in arterial myocytes, resulting in tissue-specific Ca(2+) signaling.  相似文献   

7.
As sperm prepare for fertilization, surface Ca(2+) channels must open to initiate required, Ca(2+)-mediated events. However, the molecular identity and functional properties of sperm Ca(2+) channels remain uncertain. Here, we use rapid local perfusion and single-cell photometry to examine the kinetics of calcium responses of mouse sperm to depolarizing stimuli. The linear rise of intracellular [Ca(2+)] evoked by approximately 10-s applications of an alkaline high [K(+)] medium directly reports activity of voltage-gated Ca(2+) channels. Little response occurs if external Ca(2+) is removed or if external or internal pH is elevated without depolarization. Responses are inhibited 30-40% by 30-100 micrometer Ni(2+) and more completely by 100-300 micrometer Cd(2+). They resist the dihydropyridines nitrendipine and PN200-110, but 1-10 micrometer mibefradil inhibits reversibly. They also resist the venom toxins calciseptine, omega-conotoxin MVIIC, and kurtoxin, but omega-conotoxin GVIA (5 micrometer) inhibits approximately 50%. GVIA also partially blocks transient, low voltage activated Ca(2+) currents of patch-clamped spermatids. Differential sensitivity of sperm responses to Ni(2+) and Cd(2+) and partial blockade by GVIA indicate that depolarization opens at least two types of voltage-gated Ca(2+) channels in epididymal sperm examined prior to capacitation. Involvement of a previously undetected Ca(V)2.2 (N-type) channel, suggested by the action of GVIA, is substantiated by immunodetection of Ca(2+) channel alpha(1B) subunits in sperm and sperm extracts. Resistance to dihydropyridines, calciseptine, MVIIC, and kurtoxin indicates that Ca(V)1, Ca(V)2.1, and Ca(V)3 (L-, P/Q-, and T-type) channels contribute little to this evoked response. Partial sensitivity to 1 micrometer mibefradil and an enhanced sensitivity of the GVIA-resistant component of response to Ni(2+) suggest participation of a Ca(V)2.3 (R-type) channel specified by previously found alpha(1E) subunits. Our examination of depolarization-evoked Ca(2+) entry indicates that mature sperm possess a larger palette of voltage-gated Ca(2+) channels than previously thought. Such diversity may permit specific responses to multiple cues encountered on the path to fertilization.  相似文献   

8.
Ca(v)beta subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3)-domain and a guanylate kinase-like (GK)-domain. The SH3-domain is split, with its final (fifth) beta-strand separated from the rest of the domain by an intervening sequence termed the HOOK-domain, whose sequence varies between Ca(v)beta subunits. Here we have been guided by the recent structural studies of Ca(v)beta subunits in the design of specific truncated constructs, with the goal of investigating the role of the HOOK-domain of Ca(v)beta subunits in the modulation of inactivation of N-type calcium channels. We have coexpressed the beta subunit constructs with Ca(v)2.2 and alpha(2)delta-2, using the N-terminally palmitoylated beta(2a) subunit, because it supports very little voltage-dependent inactivation, and made comparisons with beta(1b) domains. Deletion of the variable region of the beta(2a) HOOK-domain resulted in currents with a rapidly inactivating component, and additional mutation of the beta(2a) palmitoylation motif further enhanced inactivation. The isolated GK-domain of beta(2a) alone enhanced current amplitude, but the currents were rapidly and completely inactivating. When the beta(2a)-GK-domain construct was extended proximally, by including the HOOK-domain and the epsilon-strand of the SH3-domain, inactivation was about four-fold slower than in the absence of the HOOK domain. When the SH3-domain of beta(2a) truncated prior to the HOOK-domain was coexpressed with the (HOOK+epsilonSH3+GK)-domain of beta(2a), all the properties of beta(2a) were restored, in terms of loss of inactivation. Furthermore, removal of the HOOK sequence from the (HOOK+epsilonSH3+GK)-beta(2a) construct increased inactivation. Together, these results provide evidence that the HOOK domain is an important determinant of inactivation.  相似文献   

9.
10.
To address mechanisms for the differential sensitivity of voltage-gated Ca2+ channels (Cav) to agonists, channel activity was compared in Xenopus oocytes coexpressing muscarinic M(1) receptors and different Cav alpha1 subunits, all with beta1B,alpha2/delta subunits. Acetyl-beta-methylcholine (MCh) decreased Cav 1.2c currents, did not affect 2.1 or 2.2 currents, but potentiated Cav 2.3 currents. Phorbol 12-myristate 13-acetate (PMA) did not affect Cav 1.2c or 2.1 currents but potentiated 2.2 and 2.3 currents. Comparison of the amino acid sequences of the alpha1 subunits revealed a set of potential protein kinase C phosphorylation sites in common between the 2.2 and 2.3 channels that respond to PMA and a set of potential sites unique to the alpha1 2.3 subunits that respond to MCh. Quadruple Ser --> Ala mutation of the predicted MCh sites in the alpha1 2.3 subunit (Ser-888, Ser-892, and Ser-894 in the II-III linker and Ser-1987 in the C terminus) caused loss of the MCh response but not the PMA response. Triple Ser --> Ala mutation of just the II-III linker sites gave similar results. Ser-888 or Ser-892 was sufficient for the MCh responsiveness, whereas Ser-894 required the presence of Ser-1987. Ser --> Asp substitution of Ser-888, Ser-892, Ser-1987, and Ser-892/Ser-1987 increased the basal current and decreased the MCh response but did not alter the PMA response. These results reveal that sites unique to the II-III linker of alpha1 2.3 subunits mediate the responsiveness of Cav 2.3 channels to MCh. Because Cav 2.3 channels contribute to action potential-induced Ca2+ influx, these sites may account for M1 receptor-mediated regulation of neurotransmission at some synapses.  相似文献   

11.
High voltage-gated calcium channels consist of a pore-forming subunit (alpha(1)) and three nonhomologous subunits (alpha(2)/delta, beta, and gamma). Although it is well established that the beta-subunit promotes traffic of channels to the plasma membrane and modifies their activity, the reversible nature of the interaction with the alpha(1)-subunit remains controversial. Here, we address this issue by examining the effect of purified beta(2a) protein on Ca(V)1.2 and Ca(V)2.3 channels expressed in Xenopus oocytes. The beta(2a)-subunit binds to the alpha(1)-interaction domain (AID) in vitro, and when injected into oocytes, it shifts the voltage dependence of activation and increases charge movement to ionic current coupling of Ca(V)1.2 channels. This increase depended on the integrity of AID but was not abolished by bafilomycin, demonstrating that the alpha(1)-beta interaction through the AID site can take place at the plasma membrane. Furthermore, injection of beta(2a) protein inhibited inactivation of Ca(V)2.3 channels and converted fast inactivating Ca(V)2.3/beta(1b) channels to slow inactivating channels. Inhibition of inactivation required larger concentration of beta(2a) in oocytes expressing Ca(V)2.3/beta(1b) channels than expressing Ca(V)2.3 alone but reached the same maximal level as expected for a competitive interaction through a single binding site. Together, our data show that the alpha(1)-beta interaction is reversible in intact cells and defines calcium channels beta-subunits as regulatory proteins rather than stoichiometric subunits.  相似文献   

12.
entla, a novel epileptic and ataxic Cacna2d2 mutant of the mouse   总被引:3,自引:0,他引:3  
entla (ent) is a novel recessive phenotype of mice. The underlying mutation was mapped to chromosome 9 (60.1 centimorgans) and identified as an allele of the Cacna2d2 gene encoding the alpha2delta-2 subunit of voltage-gated calcium channels. The Cacna2d2entla allele harbors a 38-kb duplication comprising the 117 nucleotides of exon 3. The predicted duplication of 39 amino acid residues near the subunit's N terminus results in the expression of a full-length, membrane-associated protein. Western blot data were consistent with correct cleavage of the alpha2delta-2entla precursor into alpha2entla and delta2 proteins but indicated loss of the disulfide linkage between the two proteins. ent/ent mice develop ataxia by postnatal day 13-15, followed by paroxysmal dyskinesia a few days later. Two distinct types of cortical and hippocampal epileptic activity at 2 and 4 Hz were recorded, indicative of absence epilepsy. Homozygotes display reduced size and weight, increased mortality before weaning, and female infertility. No overt neuroanatomical abnormalities were detected. Ca2+ current densities recorded from acutely dissociated Purkinje cells of homozygous entla animals were reduced by 50% compared with wild type. Ligand binding assays using the antiepileptic drug [3H]gabapentin, a specific ligand of the alpha2delta-1 and alpha2delta-2 subunits, revealed a >60% reduced maximum binding to cerebellar membranes of ent/ent compared with unaffected littermates. entla is allelic to ducky and ducky2J, representing the third murine Cacna2d2 allele identified and so far the only one encoding an untruncated protein that is incorporated into membranes.  相似文献   

13.
It has been suggested that the auxiliary subunits of high voltage-activated (HVA) calcium channels modulate T-type, low voltage-activated (LVA) calcium channels. Such a regulation has yet to be documented, especially because there has been no biochemical characterization of T-channels. To monitor total protein levels and plasma membrane expression of T-channels in living cells, external epitopes (hemagglutinin, FLAG) were introduced into human recombinant Ca(V)3 channels that were also N-terminally fused to green fluorescent protein. Utilizing Western blot techniques, fluorescence flow cytometry, immunofluorescence, luminometry, and electrophysiology, we describe here that beta(1b) and alpha(2)-delta(1) subunits enhance the level of Ca(V)3 proteins as well as their plasma membrane expression in various expression systems. We also report that, in both Xenopus oocytes and mammalian cells, the alpha(2)-delta(1) subunits increase by at least and beta(1b) 2-fold the current density of Ca(V)3 channels with no change in the electrophysiological properties. Altogether, these data indicate that HVA auxiliary subunits modulate Ca(V)3 channel surface expression, suggesting that the membrane targeting of HVA and LVA alpha(1) subunits is regulated dynamically through the expression of a common set of regulatory subunits.  相似文献   

14.
15.
Depolarisation-induced Ca2+ influx into electrically excitable cells is determined by the density of voltage-gated Ca2+ channels at the cell surface. Surface expression is modulated by physiological stimuli as well as by drugs and can be altered under pathological conditions. Extracellular epitope-tagging of channel subunits allows to quantify their surface expression and to distinguish surface channels from those in intracellular compartments. Here we report the first systematic characterisation of extracellularly epitope-tagged Ca(V)2.1 channels. We identified a permissive region in the pore-loop of repeat IV within the Ca(V)2.1 alpha(1) subunit, which allowed integration of several different tags (hemagluttinine [HA], double HA; 6-histidine tag [His], 9-His, bungarotoxin-binding site) without compromising alpha(1) subunit protein expression (in transfected tsA-201 cells) and function (after expression in X. laevis oocytes). Immunofluorescence studies revealed that the double-HA tagged construct (1722-HAGHA) was targeted to presynaptic sites in transfected cultured hippocampal neurons as expected for Ca(V)2.1 channels. We also demonstrate that introduction of tags into this permissive position creates artificial sites for channel modulation. This was demonstrated by partial inhibition of 1722-HA channel currents with anti-HA antibodies and the concentration-dependent stimulation or partial inhibition by Ni-nitrilo triacetic acid (NTA) and novel bulkier derivatives (Ni-trisNTA, Ni-tetrakisNTA, Ni-nitro-o-phenyl-bisNTA, Ni-nitro-p-phenyl-bisNTA). Therefore our data also provide evidence for the concept that artificial modulatory sites for small ligands can be introduced into voltage-gated Ca2+ channel for their selective modulation.  相似文献   

16.
L-type Ca(2+) channels in native tissues have been found to contain a pore-forming alpha(1) subunit that is often truncated at the C terminus. However, the C terminus contains many important domains that regulate channel function. To test the hypothesis that C-terminal fragments may associate with and regulate C-terminal-truncated alpha(1C) (Ca(V)1.2) subunits, we performed electrophysiological and biochemical experiments. In tsA201 cells expressing either wild type or C-terminal-truncated alpha(1C) subunits in combination with a beta(2a) subunit, truncation of the alpha(1C) subunit by as little as 147 amino acids led to a 10-15-fold increase in currents compared with those obtained from control, full-length alpha(1C) subunits. Dialysis of cells expressing the truncated alpha(1C) subunits with C-terminal fragments applied through the patch pipette reconstituted the inhibition of the channels seen with full-length alpha(1C) subunits. In addition, C-terminal deletion mutants containing a tethered C terminus also exhibited the C-terminal-induced inhibition. Immunoprecipitation assays demonstrated the association of the C-terminal fragments with truncated alpha(1C) subunits. In addition, glutathione S-transferase pull-down assays demonstrated that the C-terminal inhibitory fragment could associate with at least two domains within the C terminus. The results support the hypothesis the C- terminal fragments of the alpha(1C) subunit can associate with C-terminal-truncated alpha(1C) subunits and inhibit the currents through L-type Ca(2+) channels.  相似文献   

17.
The present study was undertaken to investigate the role of spinal voltage-dependent calcium channel alpha(2)delta-1 subunit in the expression of a neuropathic pain-like state induced by partial sciatic nerve ligation in mice. In cultured spinal neurons, gabapentin (GBP), which displays the inhibitory effect of alpha(2)delta-1 subunit, suppressed the extracellular Ca(2+) influx induced by KCl, whereas it failed to inhibit the intracellular Ca(2+) release induced by inositol-1,4,5-triphosphate. Seven days after sciatic nerve ligation, the protein level of alpha(2)delta-1 subunit in the ipsilateral spinal cord was clearly increased compared to that observed in sham-operated mice. In addition, the mRNA level of alpha(2)delta-1 subunit was significantly increased in the dorsal root ganglion, but not in the spinal cord, of nerve-ligated mice. Under these conditions, a marked decrease in the latency of paw-withdrawal against a thermal stimulation and tactile stimulation, induced by sciatic nerve ligation was abolished by repeated intrathecal (i.t.) treatment with GBP. Additionally, the persistent reduction in the nociceptive threshold by i.t. treatment with GBP at the early stage of the neuropathic pain-like state was maintained for 7 days even after GBP withdrawal. It is of interest to note that a single i.t. post-injection of GBP showed a marked and transient inhibitory effect on the developed neuropathic pain-like state, whereas repeated i.t. post-treatment with GBP produced a persistent inhibitory effect during the treatment. In conclusion, we propose here that the neuropathic pain-like state with sciatic nerve ligation is associated with the increased level of the alpha(2)delta-1 subunit of Ca(2+) channels at the sensory nerve terminal in the spinal dorsal horn of mice. Furthermore, the present data provide evidence that the neuropathic pain may be effectively controlled by repeated treatment with GBP at the early stage.  相似文献   

18.
19.
Calcium channel beta subunits are essential regulatory elements of the gating properties of high voltage-activated calcium channels. Co-expression with beta(3) subunits typically accelerates inactivation, whereas co-expression with beta(4) subunits results in a slowly inactivating phenotype. Here, we have examined the molecular basis of the differential effect of these two subunits on the inactivation characteristics of Ca(v)2.2 + alpha(2)-delta(1) N-type calcium channels by creating a series of 22 chimeric beta subunits that are based on various combinations of variable and conserved regions of the parent beta subunit isoforms. Our data show that replacement of the N terminus region of beta(4) with a corresponding 14-amino acid stretch of beta(3) sequence accelerates the inactivation kinetics to levels seen with wild type beta(3). A similar kinetic speeding is observed by a concomitant substitution of the second conserved and variable regions, but not when these regions are substituted individually, suggesting that 1) the second variable and conserved regions cooperatively regulate N-type calcium channel inactivation and 2) that there are two redundant mechanisms that allow the beta(3) subunit to accelerate N-type channel inactivation. In contrast with previous reports in Ca(v)2.1 calcium channels, deletion of the C-terminal region of Ca(v)2.2 did not alter the regulation of the channel by wild type and chimeric beta subunits. Hence, the molecular underpinnings of beta subunit regulation of voltage-gated calcium channels appear to vary with calcium channel subtype.  相似文献   

20.
Cloning of three members of low-voltage-activated (LVA) calcium channel family, predominantly neuronal alpha1G and alpha1I, and ubiquitous alpha1H, enabled to investigate directly their electrophysiological and pharmacological profile as well as their putative subunit composition. All the three channels are half-activated at membrane potential about -40 mV and half-inactivated at about -70 mV. Kinetics of alpha1G and alpha1H channels activation and inactivation are similar and faster than that of alpha1I channel. All the three channels are blocked with high affinity by the organic blocker mibefradil. Another high affinity blocker is kurtoxin. Cloned LVA channels are relatively insensitive to antiepileptics, dihydropyridines and omega-conotoxins. Ni2+ is high affinity blocker of alpha1H channel only. Amiloride inhibits the alpha1H channel. The subunit composition of LVA channel remains unclear. Out of known high-voltage-activated calcium channel subunits, alpha2delta-2 and gamma-5 subunits significantly and systematically modified activation and/or inactivation of the current. In contrast, alpha2delta-1, alpha2delta-3, gamma-2 and gamma-4 subunits failed to modulate the current or had only minor effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号