首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ma QF  Hu J  Wu WH  Liu HD  Du JT  Fu Y  Wu YW  Lei P  Zhao YF  Li YM 《Biopolymers》2006,83(1):20-31
Amyloid-beta peptide (Abeta) is the principal constituent of plaques associated with Alzheimer's disease (AD) and is thought to be responsible for the neurotoxicity associated with the disease. Copper binding to Abeta has been hypothesized to play an important role in the neruotoxicity of Abeta and free radical damage, and Cu2+ chelators represent a possible therapy for AD. However, many properties of copper binding to Abeta have not been elucidated clearly, and the location of copper binding sites on Abeta is also in controversy. Here we have used a range of spectroscopic techniques to characterize the coordination of Cu2+ to Abeta(1-16) in solution. Electrospray ionization mass spectrometry shows that copper binds to Abeta(1-16) at pH 6.0 and 7.0. The mode of copper binding is highly pH dependent. Circular dichroism results indicate that copper chelation causes a structural transition of Abeta(1-16). UV-visible absorption spectra suggest that three nitrogen donor ligands and one oxygen donor ligand (3N1O) in Abeta(1-16) may form a type II square-planar coordination geometry with Cu2+. By means of fluorescence spectroscopy, competition studies with glycine and L-histidine show that copper binds to Abeta(1-16) with an affinity of Ka approximately 10(7) M(-1) at pH 7.8. Besides His6, His13, and His14, Tyr10 is also involved in the coordination of Abeta(1-16) with Cu2+, which is supported by 1H NMR and UV-visible absorption spectra. Evidence for the link between Cu2+ and AD is growing, and this work has made a significant contribution to understanding the mode of copper binding to Abeta(1-16) in solution.  相似文献   

2.
Cu(II) ions are implicated in the pathogenesis of Alzheimer disease by influencing the aggregation of the amyloid-β (Aβ) peptide. Elucidating the underlying Cu(II)-induced Aβ aggregation is paramount for understanding the role of Cu(II) in the pathology of Alzheimer disease. The aim of this study was to characterize the qualitative and quantitative influence of Cu(II) on the extracellular aggregation mechanism and aggregate morphology of Aβ(1-40) using spectroscopic, microelectrophoretic, mass spectrometric, and ultrastructural techniques. We found that the Cu(II):Aβ ratio in solution has a major influence on (i) the aggregation kinetics/mechanism of Aβ, because three different kinetic scenarios were observed depending on the Cu(II):Aβ ratio, (ii) the metal:peptide stoichiometry in the aggregates, which increased to 1.4 at supra-equimolar Cu(II):Aβ ratio; and (iii) the morphology of the aggregates, which shifted from fibrillar to non-fibrillar at increasing Cu(II):Aβ ratios. We observed dynamic morphological changes of the aggregates, and that the formation of spherical aggregates appeared to be a common morphological end point independent on the Cu(II) concentration. Experiments with Aβ(1-42) were compatible with the conclusions for Aβ(1-40) even though the low solubility of Aβ(1-42) precluded examination under the same conditions as for the Aβ(1-40). Experiments with Aβ(1-16) and Aβ(1-28) showed that other parts than the Cu(II)-binding His residues were important for Cu(II)-induced Aβ aggregation. Based on this study we propose three mechanistic models for the Cu(II)-induced aggregation of Aβ(1-40) depending on the Cu(II):Aβ ratio, and identify key reaction steps that may be feasible targets for preventing Cu(II)-associated aggregation or toxicity in Alzheimer disease.  相似文献   

3.
DNase II is an acid endonuclease that is involved in the degradation of exogenous DNA and is important for DNA fragmentation and degradation during cell death. In an effort to understand its catalytic mechanism, we constructed plasmids encoding nine different histidine (H)-to-leucine (L) mutants for porcine DNase II and examined the enzyme properties of the expressed mutant proteins. Of the mutants, all but H132L were secreted into the medium of expressing cells. Six of the mutated DNase II proteins (H41L, H109L, H206L, H207L, H274L and H322L) showed enzyme activity, whereas the H115L, H132L and H297L mutants exhibited very little activity. The H115L and H297L mutants were found to undergo correct protein folding, but were inactive. To further examine these mutants, we expressed H115A and H297A DNase II mutants; these mutants were inactive, but their DNase activities could be rescued with imidazole, indicating that His115 and His297 are likely to function as a general acid and a general base respectively in the catalytic centre of the enzyme. In contrast with the secreted mutants, the H132L mutant protein was found in cell lysates within 16 h after transfection. This protein was inactive, improperly folded and was drastically degraded via the proteosomal pathway after 24 h. The polypeptide of another substitution for His132 with lysine resulted in the misfolded form being retained in endoplasmic reticulum.  相似文献   

4.
5.
The Cu(II) in Cu(H(-2)L) has been postulated to be successively transported to cysteine (Cys) as follows; Cu(H(-2)L) <==> Cu(H(-2)L)(Cys*-) <==> Cu(H(-1)L)(Cys*-) --> Cu(H(-1)L)(Cys-), where Cys*- denotes the monodentate Cys-. N-acetyl-cysteinate (ACys-) complexes Cu(H(-2)L)(ACys-) and Cu(H(-1)L)(ACys-), having similar coordination modes to Cu(H(-2)L)(Cys*-) and Cu(H(-1)L)(Cys*-), respectively, exhibited the S --> Cu(II) charge transfer absorption at 325-355 nm and the d-d absorption at 530-610 nm. A linear interrelation existed between the energies of the CD and d-d absorptions. Cu(H(-2)L)(ACys-) were in rapid equilibrium with Cu(H(-1)L)(ACys-). Upon forming the ternary complex, pK(c2) of the parent Cu(H(-1)L) was raised to more than 1.0. The formation constants (K) of the Cu(H(-1)L)(ACys-) species from Cu(H(-1)L) were bigger than those of Cu(H(-2)L)(ACys-) from Cu(H(-2)L). The linear free-energy relationship existed between the free-energy change (deltaG) and the entropy change (deltaS) for the ternary complex formation. The rate constants (k1+) for the Cu(H(-1)L)(Cys-) formation closely correlated with the K values for Cu(H(-2)L)(ACys-). The ternary complexes containing ACys are considered to be analogous complexes to the intermediates in the transport of Cu(II) from peptides to cysteine.  相似文献   

6.
Matrix-assisted laser desorption mass spectrometry successfully analyzes mixed populations of amyloid-β (Aβ) peptides, providing a profile in which changes caused by drug action are directly observed. A spectrum of Aβ immunocaptured from guinea pig brain included a novel component with monoisotopic [M + H]+ at 4511.22, close to the monoisotopic value of [M + H]+ for Aβ(1-42) of 4512.27 and overlapping and interfering with the authentic Aβ(1-42) peak. Hypothesis and experiment led to the conclusion that modification of Aβ(1-40) by the protease inhibitor aminoethylbenzenesulfonyl fluoride generates a product with monoisotopic [M + H]+ at 4511.19, and that this accounts for the interfering peak.  相似文献   

7.
The results are reported of a potentiometric and spectroscopic study of the copper(II) complexes of aminophosphonic acid containing a pyridyl side chain. The aminophosphonic acid coordinates similarly to carboxyl amino acids, forming chelate MA and MA2 species. Stable MAH species with only a phosphonic group coordinated to the metal ion exist at lower pH. The pyridyl side chain was found to be noneffective in the interaction with Cu(II) ion.  相似文献   

8.
In the thermoluminescence (TL) glow curve of photosystem II, particles depleted of manganese, a tyrosine modifier, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD) abolishes the TL band appearing around -55 degrees C (TL-55). Addition of a histidine modifier, diethylpyrocarbonate results in the disappearance of the band peaking around -30 degrees C (TL-30). NBD treatment also abolishes the EPR signal IIfast of oxidized tyrosine donor, Yz, and inhibits the electron transport from diphenylcarbazide to 2,6-dichlorophenol-indophenol. It is concluded that the TL-55 and TL-30 bands can be assigned to oxidized tyrosine (Yz+) and histidine (His+) residues, respectively, which participate in electron transfer from manganese to the reaction center of chlorophyll, P680+.  相似文献   

9.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.  相似文献   

10.
Amyloid-β peptides (Aβ) are key molecules in Alzheimer's disease (AD) pathology as they form amyloid plaques that are primary hallmarks of AD. There is increasing evidence demonstrating that the biometals zinc(ii) and copper(ii) interact with Aβ peptides and have an influence on their fibrillization and toxicity. Zinc and copper ions are abundantly present in the synaptic areas of the brain, and it is likely that the age-related dyshomeostasis of these biometals is associated with AD pathology. In this review we summarize the knowledge of the interactions of zinc and copper ions with Aβ peptides, their role in Aβ fibrillization and toxicity and provide a critical analysis of the conflicting results in the field. Copper ions entrapped in Aβ fibrils are electrochemically active and can generate ROS in the presence of hydrogen peroxide and reducing agents. This might provide a key for understanding the putative role of copper in Aβ toxicity and AD pathology.  相似文献   

11.
Rat alpha-fetoprotein contains a site that both binds serine enzyme inhibitors and substrates and regulates estrogen binding. We report that mM concentrations of the histidine selective reagent, diethylpyrocarbonate, inhibit estrogen binding to rat alpha-fetoprotein and that this inhibition is reversed by hydroxylamine. We suggest that rat alpha-fetoprotein contains one or more histidine residues that regulate estrogen binding. We also find that either estrone or the chymotrypsin substrate, acetyl-tryptophan methyl ester, protects rat alpha-fetoprotein from diethyl-pyrocarbonate-mediated inhibition of estrogen binding. We infer that the protease substrate and estrogen binding sites contain histidine residue(s) essential for estrogen binding by alpha-fetoprotein.  相似文献   

12.
Karr JW  Szalai VA 《Biochemistry》2008,47(17):5006-5016
Copper has been proposed to play a role in Alzheimer's disease through interactions with the amyoid-beta (Abeta) peptide. The coordination environment of bound copper as a function of Cu:Abeta stoichiometry and Abeta oligomerization state are particularly contentious. Using low-temperature electron paramagnetic resonance (EPR) spectroscopy, we spectroscopically distinguish two Cu(II) binding sites on both soluble and fibrillar Abeta (for site 1, A parallel = 168 +/- 1 G and g parallel = 2.268; for site 2, A parallel = 157 +/- 2 G and g parallel = 2.303). When fibrils that have been incubated with more than 1 equiv of Cu(II) are washed, the second Cu(II) ion is removed, indicating that it is only weakly bound to the fibrils. No change in the Cu(II) coordination environment is detected by EPR spectroscopy of Cu(II) with Abeta (1:1 ratio) collected as a function of Abeta fibrillization time, which indicates that the Cu(II) environment is independent of Abeta oligomeric state. The initial Cu(II)-Abeta complexes go on to form Cu(II)-containing Abeta fibrils. Transmission electron microscopy images of Abeta fibrils before and after Cu(II) addition are the same, showing that once incorporated, Cu(II) does not affect fibrillar structure; however, the presence of Cu(II) appears to induce fibril-fibril association. On the basis of our results, we propose a model for Cu(II) binding to Abeta during fibrillization that is independent of peptide oligomeric state.  相似文献   

13.
14.
Cu in blood has been believed to transport into cell via albumin and some amino acids. To shed light on the Cu transport process we studied the reaction of the Cu(II)-peptide with the amino acid by absorption and CD spectra. Albumin mimic peptides GlyGly-L-HisGly (GGHG) and penta-Gly(G5) formed stable 4N coordinated Cu(II) complexes, but in the reaction with histidine (His) and penicillamine (Pes) the ternary Cu(II) complex formations were observed different by the kinetic study. Cu(II)-G5 complexes reacted with Pes to form the ternary complex Cu(H(-1)G5)(Pes(-)) which was subsequently transformed to the binary complex Cu(Pes(-))(2). In the system with GGHG the Cu(II) was also transported from GGHG to Pes, but the ternary Cu(H(-1)GGHG)(Pes(-)) complex as the intermediate was detected a trace. The ternary complex would be spontaneously transformed to Cu(Pes(-))(2) upon forming, because the rate constant of the ternary complex formation k(1+)= approximately 2M(-1)s(-1) was less than k(2+)= approximately 5 x 10(2)M(-1)s(-1) for the Cu(Pes(-))(2) formation at physiological pH. In the Cu(II)-GGHG-His system the ternary Cu(H(-1)GGHG)(His) complex was also hardly identified because the formation constant K(1) and k(1+) were very small and the equilibrium existed between Cu(H(-2)GGHG) and Cu(His)(2) and its overall equilibrium constant beta(2) for Cu(His)(2) was very small to be 1.00+/-0.05 M(-1) at pH 9.0. These results indicated that the ternary complex is formed in the Cu transport process from the albumin to the amino acid, but His imidazole nitrogen in the fourth-binding site of Cu(II) strongly resists the replacement by the incoming ligand.  相似文献   

15.
Previously we demonstrated that Ni(II) complexes of Ac-Thr-Glu-Ser-His-His-Lys-NH2 hexapeptide, representing residues 120-125 of human histone H2A, and some of its analogs undergo E-S peptide bond hydrolysis. In this work we demonstrate a similar coordination and reactivity pattern in Ni(II) complexes of Ac-Thr-Glu-Thr-His-His-Lys-NH2, its threonine analogue, studied using potentiometry, electronic absorption spectroscopy and HPLC. For the first time we present the detailed temperature and pH dependence of such Ni(II)-dependent hydrolysis reactions. The temperature dependence of the rate of hydrolysis yielded activation energy E(a) = 92.0 kJ mol(-1) and activation entropy DeltaS# = 208 J mol(-1) K(-1). The pH profile of the reaction rate coincided with the formation of the four-nitrogen square-planar Ni(II) complex of Ac-Thr-Glu-Thr-His-His-Lys-NH2. These results expand the range of protein sequences susceptible to Ni(II) dependent cleavage by those containing threonine residues and permit predictions of the course of this reaction at various temperatures and pH values.  相似文献   

16.
Circular dichroism was used to compare the environment of peptides bound to native and des 1-8 neurophysin in order to further elucidate the role of the neurophysin 1-8 sequence in peptide-binding. A very large positive ellipticity (approximately 6000 deg cm2 dmol-1), shown earlier to be induced in tyrosine at position 2 of peptides bound to the native protein, was determined by the present study to be paralleled by similar induced changes in tyrosine at peptide position 1. Deletion of the neurophysin 1-8 sequence led to loss of half of the induced optical activity at peptide positions 1 and 2 and changes in binding-induced optical activity in the protein, the latter partially assignable to protein disulfides. In the mononitrated native and des 1-8 proteins, the optical activity of neurophysin Tyr-49, a residue at the peptide-binding site, was reduced by 80% in complexes of the des 1-8 protein relative to those of the native protein. The results suggest a role for neurophysin Arg-8 in modulating the optical activity at the binding site by directly placing a charge proximal to the binding site and/or by altering binding site conformation. The data provide the first unambiguous evidence of a difference in the environment of bound peptide between the native and des 1-8 proteins.  相似文献   

17.
1. Four histidine-containing peptides have been isolated from a tryptic digest of the Zn2+-requiring beta-lactamase II from Bacillus cereus. One of these peptides probably contains two histidine residues. 2. The presence of one equivalent of Zn2+ substantially decreases the rate of exchange of the C-2 proton in at least two and probably three of the histidine residues of these peptides for solvent 3H. 3. It is concluded that peptides containing at least two of the three histidine residues acting as Zn2+ ligands at the tighter Zn2+-binding site of beta-lactamase II have been identified.  相似文献   

18.
Enteroglucagon (II) was isolated from extracts of pig ileum mucosa by repeated gel filtrations, and its immunochemical and chromatographic characteristics were compared with those of a synthetic peptide corresponding to the 33-69 sequence of pig glicentin, before and after digestion with trypsin or trypsin followed by carboxypeptidase B, by using five region-specific assays covering most of the glicentin sequence. Enteroglucagon (II) and the synthetic peptide behave identically under three different conditions of chromatography as determined with all five assays (including a highly specific radioreceptor assay), and gave rise to similar fragments after enzyme digestion. It was therefore concluded that enteroglucagon (II) and the 33-69 sequence of glicentin are most probably identical.  相似文献   

19.
The dinucleating macrocyclic ligand 3,6,9,17,20,23-hexaaza-29,30-dihydroxy-13,27-dimethyl-tricyclo[23,3,1,111,15] triaconta-1(28),11,13,15(30),25,26,-hexaene(BDBPH) was synthesized from [2+2] condensation between a diethylenetriamine lead(II) mononuclear complex and diformal-p-cresol. By stepwise synthesis, the heterodinuclear Cu(II)Cd(II) complex was obtained. The single crystal was triclinic, space group P1, with cell constants a=13.2675(10) Å, b=16.4655(13) Å, c=17.9502(14) Å, α=87.78(10), β=68.69(10), γ=74.81(10), V=3517.6(3) Å and Z=4. Potentiometric titration reveals that Cu(II)Cd(II)BDBPHOH species dominate in basic solution from pH 7 to 12. In the hydrolysis of BNP, this dinuclear complex can provide both Lewis acid and base sites to an active phosphate diester in which nucleophilic OH attacks the substrate to fulfill the hydrolysis cycle. In this system the synergic two functional groups in one catalyst molecule exerted remarkable catalytic activity towards hydrolysis of BNP.  相似文献   

20.
Soybean urease has been investigated extensively to reveal the presence of histidine residue (s) in the active site and their potential role in the catalysis. The spectrophotometric studies using diethylpyrocarbonate (DEP) showed the modification of 11.76 ± 0.1 histidine residues per mole of native urease. Therefore, the results are indicative of the presence of twelve histidine residues per urease molecule. It is presumed that the soybean urease, being a hexameric protein possess two histidine residues per subunit. Correlation plot showed that the complete inactivation of soybean urease corresponds to the modification of 1.97 histidine residues per subunit. Further, double logarithmic plot of kapp versus DEP concentration has resulted in a linear correlation and thereby demonstrating that only one of the two histidine residues per subunit is catalytically essential. Significant protection has been observed against inactivation when urea or acetohydroxamate (AHA) is incubated with DEP treated urease. The studies have demonstrated the presence of one histidine residue at the active site of soybean urease and its significance in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号