首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N1-acetylation of spermidine and spermine by spermidine/spermine acetyltransferase (SSAT) is a crucial step in the regulation of the cellular polyamine levels in eukaryotic cells. Altered polyamine levels are associated with a variety of cancers as well as other diseases, and key enzymes in the polyamine pathway, including SSAT, are being explored as potential therapeutic drug targets. We have expressed and purified human SSAT in Escherichia coli and characterized its kinetic and chemical mechanism. Initial velocity and inhibition studies support a random sequential mechanism for the enzyme. The bisubstrate analogue, N1-spermine-acetyl-coenzyme A, exhibited linear, competitive inhibition against both substrates with a true Ki of 6 nM. The pH-activity profile was bell-shaped, depending on the ionization state of two groups exhibiting apparent pKa values of 7.27 and 8.87. The three-dimensional crystal structure of SSAT with bound bisubstrate inhibitor was determined at 2.3 A resolution. The structure of the SSAT-spermine-acetyl-coenzyme A complex suggested that Tyr140 acts as general acid and Glu92, through one or more water molecules, acts as the general base during catalysis. On the basis of kinetic properties, pH dependence, and structural information, we propose an acid/base-assisted reaction catalyzed by SSAT, involving a ternary complex.  相似文献   

2.
Extreme inducibility of spermidine/spermine acetyltransferase (SSAT) by bis-ethyl derivatives of spermine in human large cell lung carcinoma and melanoma cells has prompted biochemical characterization of the purified enzyme. Treatment of human MALME-3 melanoma cells with 10 microM N1,N11-bis(ethyl)norspermine (BENSPM) for 48-72 h increased SSAT activity by some 1000- to 4000-fold and enabled purification of the enzyme by established procedures--binding on immobilized spermine and elution with spermine followed by binding on Matrex Blue A and elution with coenzyme A. The enzyme showed a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a single subunit species and molecular weight of approximately 20,300 Da. By gel permeation chromatography, the holoenzyme was found to have a molecular weight of 80,000 Da, suggesting a total of four identical subunits. Purified SSAT had a specific activity of 285 mumol/min/mg for spermidine and Km values of 5.9 microM for acetylcoenzyme A, 55 microM for spermidine, 5 microM for spermine, 36 microM for N1-acetylspermine, 1.6 microM for norspermidine, and 4 microM for norspermine. Homologs of BENSPM were found to be competitive inhibitors of spermidine acetylation, with Ki values of 0.8 microM for BENSPM, 1.9 microM for N1,N12-bis-(ethyl)spermine and 17 microM for N1,N14-bis-(ethyl)-homospermine. Correlation of these values with the relative abilities of the homologs to increase SSAT in intact cells suggests that formation of an enzyme inhibitor complex may play a contributing role in enzyme induction.  相似文献   

3.
eIF5A (eukaryotic translation initiation factor 5A) is the only cellular protein containing hypusine [N?-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In the present study, we report selective acetylation of the hypusine and/or deoxyhypusine residue of eIF5A by a key polyamine catabolic enzyme SSAT1 (spermidine/spermine-N1-acetyltransferase 1). This enzyme normally catalyses the N1-acetylation of spermine and spermidine to form acetyl-derivatives, which in turn are degraded to lower polyamines. Although SSAT1 has been reported to exert other effects in cells by its interaction with other cellular proteins, eIF5A is the first target protein specifically acetylated by SSAT1. Hypusine or deoxyhypusine, as the free amino acid, does not act as a substrate for SSAT1, suggesting a macromolecular interaction between eIF5A and SSAT1. Indeed, the binding of eIF5A and SSAT1 was confirmed by pull-down assays. The effect of the acetylation of hypusine on eIF5A activity was assessed by comparison of acetylated with non-acetylated bovine testis eIF5A in the methionyl-puromycin synthesis assay. The loss of eIF5A activity by this SSAT1-mediated acetylation confirms the strict structural requirement for the hypusine side chain and suggests a possible regulation of eIF5A by hypusine acetylation/deacetylation.  相似文献   

4.
The crystal structures of two ternary complexes of human spermine synthase (EC 2.5.1.22), one with 5'-methylthioadenosine and spermidine and the other with 5'-methylthioadenosine and spermine, have been solved. They show that the enzyme is a dimer of two identical subunits. Each monomer has three domains: a C-terminal domain, which contains the active site and is similar in structure to spermidine synthase; a central domain made up of four beta-strands; and an N-terminal domain with remarkable structural similarity to S-adenosylmethionine decarboxylase, the enzyme that forms the aminopropyl donor substrate. Dimerization occurs mainly through interactions between the N-terminal domains. Deletion of the N-terminal domain led to a complete loss of spermine synthase activity, suggesting that dimerization may be required for activity. The structures provide an outline of the active site and a plausible model for catalysis. The active site is similar to those of spermidine synthases but has a larger substrate-binding pocket able to accommodate longer substrates. Two residues (Asp(201) and Asp(276)) that are conserved in aminopropyltransferases appear to play a key part in the catalytic mechanism, and this role was supported by the results of site-directed mutagenesis. The spermine synthase.5'-methylthioadenosine structure provides a plausible explanation for the potent inhibition of the reaction by this product and the stronger inhibition of spermine synthase compared with spermidine synthase. An analysis to trace possible evolutionary origins of spermine synthase is also described.  相似文献   

5.
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D(140)XD(142)XE(144) sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced k(cat) and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with k(cat), indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.  相似文献   

6.
Cytosolic spermidine/spermine acetyltransferase (SSAT) catalyzes the acetylation of the N(1)-propylamino groups of spermine and spermidine. The enzyme has a very short half-life and is rapidly induced by various stimuli. Once acetylated, these polyamines are subjected to the action of polyamine oxidase, which, besides initiating polyamine catabolism, may produce reactive oxygen species that in turn trigger modifications in subcellular compartments such as mitochondria. The present work evaluates the ability of the cAMP-independent Ser/Thr-protein kinase CK1 to phosphorylate SSAT. Results demonstrate that SSAT is phosphorylated by CK1, in sites distinct from those phosphorylated by CK2. Moreover, both phosphorylation processes are involved in the uptake of SSAT into rat liver mitochondria. Although CK2 is less effective than CK1 in phosphorylating SSAT, CK2 phosphorylation is much more powerful in preventing binding of SSAT to mitochondrial structures. These results suggest the involvement of CK1- and CK2-mediated SSAT phosphorylation in regulating the contents of polyamines and SSAT itself within subcellular compartments and implicate SSAT and polyamines as indirect modulators of progression through the cell cycle.  相似文献   

7.
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D140XD142XE144 sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced kcat and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with kcat, indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.  相似文献   

8.
Subcellular distribution of spermidine/spermine N1-acetyltransferase   总被引:1,自引:0,他引:1  
The subcellular distribution of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) was studied in L56Br-C1 cells treated with 10 microM N(1),N(11)-diethylnorspermine (DENSPM) for 24 h. Cells were fractioned into three subcellular fractions. A particulate fraction containing the mitochondria was denoted as the mitochondrial fraction. After DENSPM treatment, an increase in SSAT activity was mainly found in the mitochondrial fraction. Western blot analysis showed an increased level of the SSAT protein in the mitochondrial fraction compared to the cytosolic fraction. Immunofluorescence microscopy and immunogold labeling transmission electron microscopy also showed a mitochondrial association of SSAT. Transmission electron microscopy revealed that the endoplasmic reticulum was devoid of ribosomes in DENSPM-treated cells, in contrast to control cells that contained ample ribosomes. An increased SSAT activity in connection with the mitochondria may be part of the mechanism of DENSPM-induced apoptosis.  相似文献   

9.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

10.
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.  相似文献   

11.
Agmatine has been proposed as the physiological ligand for the imidazoline receptors. It is not known whether it is also involved in the homoeostasis of intracellular polyamine content. To show whether this is the case, we have studied the effect of agmatine on rat liver cells, under both periportal and perivenous conditions. It is shown that agmatine modulates intracellular polyamine content through its effect on the synthesis of the limiting enzyme of the interconversion pathway, spermidine/spermine acetyltransferase (SSAT). Increased SSAT activity is accompanied by depletion of spermidine and spermine, and accumulation of putrescine and N1-acetylspermidine. Immunoblotting with a specific polyclonal antiserum confirms the induction. At the same time S-adenosylmethionine decarboxylase activity is significantly increased, while ornithine decarboxylase (ODC) activity and the rate of spermidine uptake are reduced. This is not due to an effect on ODC antizyme, which is not significantly changed. All these modifications are observed in HTC cells also, where they are accompanied by a decrease in proliferation rate. SSAT is also induced by low oxygen tension which mimics perivenous conditions. The effect is synergic with that promoted by agmatine.  相似文献   

12.
The N(1)-acetylation of spermidine or spermine by spermidine/spermine N(1)-acetyltransferase (SSAT) is the ratecontrolling enzymatic step in the polyamine catabolism. We have now generated SSAT knockout (SSAT-KO) mice, which confirmed our earlier results with SSATdeficient embryonic stem (ES) cells showing only slightly affected polyamine homeostasis, mainly manifested as an elevated molar ratio of spermidine to spermine in most tissues indicating the indispensability of SSAT for the spermidine backconversion.Contrary to SSAT deficient ES cells, polyamine pools in SSAT-KO mice remained almost unchanged in response to N(1),N(11)-diethylnorspermine (DENSPM) treatment compared to a significant reduction of the polyamine pools in the wild-type animals and ES cells. Furthermore, SSATKO mice were more sensitive to the toxicity exerted by DENSPM in comparison with wild-type mice. The latter finding indicates that inducible SSAT plays an essential role in vivo in DENSPM treatmentevoked polyamine depletion, but a controversial role in toxicity of DENSPM. Surprisingly, liver polyamine pools were depleted similarly in wild-type and SSAT-KO mice in response to carbon tetrachloride treatment. Further characterization of SSAT knockout mice revealed insulin resistance at old age which supported the role of polyamine catabolism in glucose metabolism detected earlier with our SSAT overexpressing mice displaying enhanced basal metabolic rate, high insulin sensitivity and improved glucose tolerance. Therefore SSAT knockout mice might serve as a novel mouse model for type 2 diabetes.  相似文献   

13.
Spermine is a substrate of lentil (Lens culinaris) seedling amine oxidase and the oxidation products are reversible inactivators of the enzyme. The spermine is oxidized at the terminal amino groups to a dialdehyde: 2 moles of hydrogen peroxide and 2 moles of ammonia per mole of spermine are formed. The pH optimum of the enzyme with spermine is 7.9 in TI-HCI buffer; the Km value is 4.4·10−4 molar, similar to that found with other substrates (putrescine and spermidine).  相似文献   

14.
15.
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N(1)-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The k(cat)/K(O2) value changes very little upon mutation with N(1)-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k(cat)/K(M)-pH profiles with N(1)-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK(a) values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK(a) as wild-type Fms1, about ~7.4; this pK(a) is assigned to the substrate N4. The k(cat)/K(O2)-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK(a) of about ~6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k(cat) value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 ?. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.  相似文献   

16.
Keratosis follicularis spinulosa decalvans (KFSD) or Siemens-1 syndrome is a rare X-linked disease of unknown etiology affecting the skin and the eye. Although most affected families are compatible with X-linked inheritance, KFSD appears to be clinically and genetically heterogeneous. So far, the gene has been mapped to Xp22.13p22.2 in two extended KFSD families. Analysis of additional recombination events in the first Dutch pedigree located the gene to an interval covering approximately 1 Mb between markers DXS7163 and DXS7593/DXS7105, whereas haplotype reconstruction in the second German family positioned the gene outside the previously identified region, proximal to marker DXS274. We report here the molecular characterization of an Xp21.1p22.12 duplication present in a patient affected with dosage-sensitive sex reversal (DSS) and KFSD. The duplicated region includes both the DAX1 gene (previously demonstrated to be responsible for DSS) and the KFSD interval, in which the gene encoding spermidine/spermine N(1)-acetyltransferase ( SSAT) is located. This enzyme catalyzes the N(1)-acetylation of spermidine and spermine and, by the successive activity of polyamine oxidase, the spermine can be converted to spermidine and the spermidine to putrescine. Overexpression of the SSAT enzyme in a mouse model results in putrescine accumulation and a phenotype with skin and hair abnormalities reminiscent of human KFSD. Analysis of polyamine metabolism in the cells of the patient indicated that the levels of metabolites such as putrescine, spermidine and spermine were consistent with the overexpression of the SSAT gene as in the murine model. Thus, we propose that overexpression of SSAT and the consequent putrescine accumulation are involved in the KFSD phenotype, at least in our propositus.  相似文献   

17.
Spermidine/spermine N1-acetyltransferase 1 (SSAT1) is a key enzyme that catalyzes the catabolism of polyamines. SSAT1 is a very important enzyme because it not only maintains the homeostasis of polyamines but also is involved in many physiological and pathological events. As such, a rapid assay of SSAT1 activity is valuable in drug screening and clinical diagnostics. Here, we report a novel colorimetric assay for monitoring SSAT1 activity in zebrafish (zSSAT1). In comparison with the available SSAT1 assays, this new method is cost-effective and simple. The optimal zSSAT1 activity was obtained below 55 °C in a mild alkaline environment. The Km values of zSSAT1 for spermidine and spermine are 55 and 182 μM, respectively, whereas putrescine is not a good substrate for zSSAT1. In addition to enzyme kinetic studies, the colorimetric assay was also used to detect the cellular activity of SSAT1. Thus, the current method is a reliable assay for determining SSAT1 activity with many potential applications in medical biology.  相似文献   

18.
19.
20.
The integrin alpha9beta1 is expressed on migrating cells, such as leukocytes, and binds to multiple ligands that are present at sites of tissue injury and inflammation. alpha9beta1, like the structurally related integrin alpha4beta1, mediates accelerated cell migration, an effect that depends on the alpha9 cytoplasmic domain. alpha4beta1 enhances migration through reversible binding to the adapter protein, paxillin, but alpha9beta1-dependent migration is paxillin independent. Using yeast two-hybrid screening, we identified the polyamine catabolizing enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) as a specific binding partner of the alpha9 cytoplasmic domain. Overexpression of SSAT increased alpha9beta1-mediated migration, and small interfering RNA knockdown of SSAT inhibited this migration without affecting cell adhesion or migration that was mediated by other integrin cytoplasmic domains. The enzyme activity of SSAT is critical for this effect, because a catalytically inactive version did not enhance migration. We conclude that SSAT directly binds to the alpha9 cytoplasmic domain and mediates alpha9-dependent enhancement of cell migration, presumably by localized effects on acetylation of polyamines or of unidentified substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号