首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The imprinted expression of the H19 and Igf2 genes in the mouse is controlled by an imprinting control center (ICR) whose activity is regulated by parent-of-origin differences in methylation. The only protein that has been implicated in ICR function is the zinc-finger protein CTCF, which binds at multiple sites within the maternally inherited ICR and is required to form a chromatin boundary that inhibits Igf2 expression. To identify other proteins that play a role in imprinting, we employed electrophoresis mobility shift assays to identify two novel binding sites within the ICR. The DNA binding activity was identified as the heterodimer Ku70/80, which binds nonspecifically to free DNA ends. The sites within the ICR bind Ku70/80 in a sequence-specific manner and with higher affinity than previously reported binding sites. The binding required the presence of Mg(2+), implying that the sequence is a pause site for Ku70/80 translocation from a free end. Chromatin immunoprecipitation assays were unable to confirm that Ku70/80 binds to the ICR in vivo. In addition, mutation of these binding sites in the mouse did not result in any imprinting defects. A genome scan revealed that the binding site is found in LINE-1 retrotransposons, suggesting a possible role for Ku70/80 in transposition.  相似文献   

6.
Ku70 plays an important role in DNA damage repair and prevention of cell death. Previously, we reported that apoptosis caused a decrease in cellular Ku70 levels. In this study, we analyzed the mechanism of how Ku70 levels decrease during drug-induced apoptosis. In HeLa cells, staurosporin (STS) caused a decrease in Ku70 levels without significantly affecting Ku70 mRNA levels. We found that Ku70 protein was highly ubiquitinated in various cell types, such as HeLa, HEK293T, Dami (a megakaryocytic cell line), endothelial, and rat kidney cells. An increase in ubiquitinated Ku70 protein was observed in apoptotic cells, and proteasome inhibitors attenuated the decrease in Ku70 levels in apoptotic cells. These results suggest that the ubiquitin-proteasome proteolytic pathway plays a role in decreasing Ku70 levels in apoptotic cells. Ku70 forms a heterodimer with Ku80, which is required for the DNA repair activity of Ku proteins. We also found that Ku80 levels decreased in apoptotic cells and that Ku80 is a target of ubiquitin. Ubiquitinated Ku70 was not found in the Ku70-Ku80 heterodimer, suggesting that modification by ubiquitin inhibits Ku heterodimer formation. We propose that the ubiquitin-dependent modification of Ku70 plays an important role in the control of cellular levels of Ku70.  相似文献   

7.
8.
9.
Human heart failure is accompanied by repression of genes such as alpha myosin heavy chain (alphaMyHC) and SERCA2A and the induction of fetal genes such as betaMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human alphaMyHC promoter. We have now identified a region of the alphaMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human alphaMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases alphaMyHC mRNA expression and increases skeletal alpha-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the alphaMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human alphaMyHC promoter during heart failure.  相似文献   

10.
11.
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins.  相似文献   

12.
13.
14.
15.
The Ku protein is composed of two polypeptide subunits, p70 and p80, and binds DNA ends in vitro. Previous studies suggested that p70 and p80 are physically associated in vivo, although such an association may have been mediated by DNA. We have now utilized full-length Ku polypeptides synthesized in vitro to examine the association of p70, p80, and linear DNA to form a complex. In gel filtration chromatography, p70 migrates as a 70-kDa structure, whereas p80 migrates at 150 kDa. Co-translation of the two cDNAs yields complexes which migrate at 300 kDa and contain equimolar quantities of the p70 and p80 polypeptides, providing direct evidence that p70 and p80 assemble into a complex in the absence of DNA. To demonstrate that this recombinant protein complex binds DNA, we developed a radiolabeled protein electrophoretic mobility shift assay. When radiolabeled proteins synthesized in vitro were incubated with linear DNA and fractionated in a nonreducing, nondenaturing gel, a band representing a complex of p70, p80, and the DNA was seen. Formation of this Ku-DNA complex required free DNA ends, and binding to DNA ends was not observed with individual p70 or p80 subunits. DNA binding was not reconstituted by mixing the individual subunits together. These studies thus demonstrate that it is the complex of p70 and p80, not individual p70 or p80, which possesses the DNA binding properties previously described for native Ku protein. These results provide new information about the assembly, structure, and DNA binding properties of the Ku protein.  相似文献   

16.
Lehman JA  Hoelz DJ  Turchi JJ 《Biochemistry》2008,47(15):4359-4368
Ionizing radiation induces DNA double-strand breaks which are repaired by the nonhomologous end joining (NHEJ) pathway. NHEJ is initiated upon Ku binding to the DNA ends and facilitating an interaction with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). This heterotrimeric DNA-PK complex is then active as a serine/threonine protein kinase. The molecular mechanisms involved in DNA-PK activation are unknown. Considering the crucial role of Ku in this process, we therefore determined the influence of DNA binding on the structure of the Ku heterodimer. Chemical modification with NHS-biotin and mass spectrometry were used to identify sites of modification. Biotinylation of free Ku revealed several reactive lysines on Ku70 and Ku80 which were reduced or eliminated upon DNA binding. Interestingly, in the predicted C-terminal SAP domain of Ku70, biotinylation patterns were observed which suggest a structural change in this region of the protein induced by DNA binding. Limited proteolytic digests of free and DNA-bound Ku revealed a series of unique peptides, again, indicative of a change in the accessibility of the Ku70 and Ku80 C-terminal domains. A 10 kDa peptide was also identified which was preferentially generated under non-DNA-bound conditions and mapped to the C-terminus of Ku70. These results indicate a DNA-dependent movement or structural change in the C-terminal domains of Ku70 and Ku80 that may contribute to DNA-PKcs binding and activation. These results represent the first demonstration of DNA-induced changes in Ku structure and provide a framework for analysis of DNA-PKcs and the mechanism of DNA-PK activation.  相似文献   

17.
18.
Rad9是一种重要的细胞周期监控点调控蛋白.越来越多的证据显示,Rad9也可与多种DNA损伤修复通路中的蛋白质相互作用,并调节其功能,在DNA损伤修复中发挥重要作用.非同源末端连接修复是DNA双链断裂的一条重要修复途径.Ku70、Ku80和DNA依赖的蛋白激酶催化亚基(DNA-PKcs)共同组成DNA依赖的蛋白激酶复合物(DNA-PK),在非同源末端修复连接中起重要作用.本研究中,检测到Rad9与Ku70有直接的物理相互作用和功能相互作用.我们在不同的细胞模型中发现,Rad9基因敲除、Rad9蛋白去除或Rad9表达降低会导致非同源末端连接效率明显下降.已有的研究表明,DNA损伤可导致细胞中Ku70与染色质结合增加及DNA-PKcs激酶活性增强.我们的结果显示,与野生小鼠细胞相比,Rad9基因敲除的小鼠细胞中, DNA损伤诱导的上述效应均减弱.综上所述,我们的研究首次报道了Rad9与非同源末端连接修复蛋白Ku70间有相互作用,并提示Rad9可通过调节Ku70/Ku80/DNA-PKcs复合物功能参与非同源末端连接修复.  相似文献   

19.
DNA double strand breaks (DSB) are among the most lethal forms of DNA damage and, in humans, are repaired predominantly by the non-homologous end joining (NHEJ) pathway. NHEJ is initiated by the Ku70/80 heterodimer binding free DNA termini and then recruiting the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the catalytically active DNA-PK holoenzyme. The extreme C-terminus of Ku80 (Ku80CTD) has been shown to be important for in vitro stimulation of DNA-PK activity and NHEJ in vivo. To better define the mechanism by which the Ku80CTD elicits these activities, we assessed its functional and physical interactions with DNA-PKcs and Ku70/80. The results demonstrate that DNA-PKcs activity could not be complemented by addition of a Ku80CTD suggesting that the physical connection of the C-terminus to the DNA binding domain of Ku70/80 is required for DNA -PKcs activation. Analysis of protein-protein interactions revealed a low but measurable binding of the Ku80CTD for Ku70/80ΔC and for DNA-PKcs while dimer formation and the formation of higher ordered structures of the Ku80CTD was readily apparent. Ku has been shown to tether DNA termini possibly due to protein/protein interactions. Results demonstrate that the presence of the Ku80CTD stimulates this activity possibly through Ku80CTD/Ku80CTD interactions.  相似文献   

20.
Recognition of DNA double-strand breaks during non-homologous end joining is carried out by the Ku70-Ku80 protein, a 150 kDa heterodimer that recruits the DNA repair kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the lesion. The atomic structure of a truncated Ku70-Ku80 was determined; however, the subunit-specific carboxy-terminal domain of Ku80--essential for binding to DNA-PKcs--was determined only in isolation, and the C-terminal domain of Ku70 was not resolved in its DNA-bound conformation. Both regions are conserved and mediate protein-protein interactions specific to mammals. Here, we reconstruct the three-dimensional structure of the human full-length Ku70-Ku80 dimer at 25 A resolution, alone and in complex with DNA, by using single-particle electron microscopy. We map the C-terminal regions of both subunits, and their conformational changes after DNA and DNA-PKcs binding to define a molecular model of the functions of these domains during DNA repair in the context of full-length Ku70-Ku80 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号