首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The mating type (-)-specific gene of the alpha-box and the mating type (+)-specific gene of the high-mobility group (HMG) DNA-binding domain were confirmed in zoophilic dematophytes of Arthroderma simii and A. vanbreuseghemii. The sequence of the alpha-box gene was 1,375 bp, containing 2 exons (from 172 to 463 bp and from 513 to 1,375 bp) in the A. simii (-) mating type strain and 1,380 bp, containing 2 exons (from 177 to 468 bp and from 518 to 1,380 bp) in the A. vanbreuseghemii (-) mating type strain. The sequence of the HMG gene was 1,871 bp, containing 2 exons (from 181 to 362 bp and from 426 to 1,440 bp, coding a protein of 398 amino acids) in the A. simii (+) mating type strain and 1,811 bp containing 2 exons (from 158 to 339 bp and from 403 to 1,381 bp, coding a protein of 386 amino acids) in the A. vanbreuseghemii (+) mating type strain. Of 15 animal isolates and 72 human isolates examined, the alpha-box gene was detected in five of the animal isolates and in none of the human isolates, while the HMG gene was detected in the other 10 of the animal isolates and in all of the human isolates. Phylogenetic analysis of the alpha-box and HMG genes of Trichophyton mentagrophytes complex strains and the Microsporum gypseum strain revealed that these strains were divided into 4 clusters; the first cluster consisting of A. vanbreuseghemii and the isolates from animals and humans, the second cluster consisting of A. simii, the third cluster consisting of A. benhamiae and the fourth cluster consisting of M. gypseum. These results indicate that anthropophilic T. mentagrophytes evolved from the A. vanbreuseghemii (+) mating strain.  相似文献   

10.
Both mating-type loci from the wheat septoria leaf blotch pathogen Mycosphaerella graminicola have been cloned and sequenced. The MAT1-2 gene was identified by screening a genomic library from the MAT1-2 isolate IPO94269 with a heterologous probe from Tapesia yallundae. The MAT1-2 idiomorph is 2772 bp and contains a single gene encoding a putative high-mobility-group protein of 394 amino acids. The opposite idiomorph was obtained from isolate IPO323, which has the complementary mating type, by long-range PCR using primers derived from sequences flanking the MAT1-2 idiomorph. The MAT1-1 locus is 2839 bp in size and contains a single open reading frame encoding a putative alpha1-domain protein of 297 amino acids. Within the nonidiomorphic sequences, homology was found with palI, encoding a membrane receptor from Aspergillus nidulans, and a gene encoding a putative component of the anaphase-promoting complex from Schizosaccharomyces pombe and a DNA-(apurinic or apyrimidinic) lyase from S. pombe. For each of the MAT genes specific primers were designed and tested on an F1 mapping population that was generated from a cross between IPO323 and IPO94269. An absolute correlation was found between the amplified allele-specific fragments and the mating type as determined by backcrosses of each F1 progeny isolate to the parental isolates. The primers were also used to screen a collection of field isolates in a multiplex PCR. An equal distribution of MAT1-1 and MAT1-2 alleles was found for most geographic origins examined.  相似文献   

11.
12.
Blastomyces dermatitidis is a dimorphic fungal pathogen that primarily causes blastomycosis in the midwestern and northern United States and Canada. While the genes controlling sexual development have been known for a long time, the genes controlling sexual reproduction of B. dermatitidis (teleomorph, Ajellomyces dermatitidis) are unknown. We identified the mating-type (MAT) locus in the B. dermatitidis genome by comparative genomic approaches. The B. dermatitidis MAT locus resembles those of other dimorphic fungi, containing either an alpha-box (MAT1-1) or an HMG domain (MAT1-2) gene linked to the APN2, SLA2, and COX13 genes. However, in some strains of B. dermatitidis, the MAT locus harbors transposable elements (TEs) that make it unusually large compared to the MAT locus of other dimorphic fungi. Based on the MAT locus sequences of B. dermatitidis, we designed specific primers for PCR determination of the mating type. Two B. dermatitidis isolates of opposite mating types were cocultured on mating medium. Immature sexual structures were observed starting at 3 weeks of coculture, with coiled-hyphae-containing cleistothecia developing over the next 3 to 6 weeks. Genetic recombination was detected in potential progeny by mating-type determination, PCR-restriction fragment length polymorphism (PCR-RFLP), and random amplification of polymorphic DNA (RAPD) analyses, suggesting that a meiotic sexual cycle might have been completed. The F1 progeny were sexually fertile when tested with strains of the opposite mating type. Our studies provide a model for the evolution of the MAT locus in the dimorphic and closely related fungi and open the door to classic genetic analysis and studies on the possible roles of mating and mating type in infection and virulence.  相似文献   

13.
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (~2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.  相似文献   

14.
The opportunistic fungal pathogen Cryptococcus neoformans has two mating types, MATa and MAT alpha. The MAT alpha strains are more virulent. Mating of opposite mating type haploid yeast cells results in the production of a filamentous hyphal phase. The MAT alpha locus has been isolated in this study in order to identify the genetic differences between mating types and their contribution to virulence. A 138-bp fragment of MAT alpha-specific DNA which cosegregates with alpha-mating type was isolated by using a difference cloning method. Overlapping phage and cosmid clones spanning the entire MAT alpha locus were isolated by using this MAT alpha-specific fragment as a probe. Mapping of these clones physically defined the MAT alpha locus to a 35- to 45-kb region which is present only in MAT alpha strains. Transformation studies with fragments of the MAT alpha locus identified a 2.1-kb XbaI-HindIII fragment that directs starvation-induced filament formation in MATa cells but not in MAT alpha cells. This 2.1-kb fragment contains a gene, MF alpha, with a small open reading frame encoding a pheromone precursor similar to the lipoprotein mating factors found in Saccharomyces cerevisiae, Ustilago maydis, and Schizosaccharomyces pombe. The ability of the MATa cells to express, process, and secrete the MAT alpha pheromone in response to starvation suggests similar mechanisms for these processes in both cell types. These results also suggest that the production of pheromone is under a type of nutritional control shared by the two cell types.  相似文献   

15.
Pheromones play important roles in female and male behaviour in the filamentous ascomycete fungi. To begin to explore the role of pheromones in mating, we have identified the genes encoding the sex pheromones of the heterothallic species Neurospora crassa. One gene, expressed exclusively in mat A strains, encodes a polypeptide containing multiple repeats of a putative pheromone sequence bordered by Kex2 processing sites. Strains of the opposite mating type, mat a, express a pheromone precursor gene whose polypeptide contains a C-terminal CAAX motif predicted to produce a mature pheromone with a C-terminal carboxy-methyl isoprenylated cysteine. The predicted sequences of the pheromones are remarkably similar to those encoded by other filamentous ascomycetes. The expression of the pheromone precursor genes is mating type specific and is under the control of the mating type locus. Furthermore, the genes are highly expressed in conidia and under conditions that favour sexual development. Both pheromone precursor genes are also regulated by the endogenous circadian clock in a time-of-day-specific fashion, supporting a role for the clock in mating.  相似文献   

16.
17.
The mating type locus (MAT1) of Magnaporthe oryzae has similar structural organization to MAT in other ascomycetes and encodes the mating type genes MAT1-1-1 with an alpha-box motif and MAT1-2-1 with an HMG-box motif in the MAT1-1 and MAT1-2 idiomorphs, respectively. Sequence and expression analyses of the MAT1 locus indicated a second open reading frame (ORF), MAT1-1-2, in the MAT1-1 idiomorph, and novel mating-type dependent ORFs (MAT1-1-3 and MAT1-2-2) at the locus. The MAT1-1-3 ORF initiated within the MAT1-1 idiomorph while the MAT1-2-2 ORF initiated at the border of the MAT1-2 idiomorph with both ORFs sharing most of their reading frames in the MAT1 flanking region. This suggests that the encoded proteins (MAT1-1-3 and MAT1-2-2) should be similar in their primary structures but can be distinguished by distinct N-termini with amino acids of 1 and 32, respectively, in each mating type. A CT dinucleotide repeat, (CT)n, present in the upstream region of MAT1-1-3, was polymorphic among the isolates.  相似文献   

18.
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.  相似文献   

19.
Lee J  Leslie JF  Bowden RL 《Eukaryotic cell》2008,7(7):1211-1221
In heterothallic ascomycete fungi, idiomorphic alleles at the MAT locus control two sex pheromone-receptor pairs that function in the recognition and chemoattraction of strains with opposite mating types. In the ascomycete Gibberella zeae, the MAT locus is rearranged such that both alleles are adjacent on the same chromosome. Strains of G. zeae are self-fertile but can outcross facultatively. Our objective was to determine if pheromones retain a role in sexual reproduction in this homothallic fungus. Putative pheromone precursor genes (ppg1 and ppg2) and their corresponding pheromone receptor genes (pre2 and pre1) were identified in the genomic sequence of G. zeae by sequence similarity and microsynteny with other ascomycetes. ppg1, a homolog of the Saccharomyces alpha-factor pheromone precursor gene, was expressed in germinating conidia and mature ascospores. Expression of ppg2, a homolog of the a-factor pheromone precursor gene, was not detected in any cells. pre2 was expressed in all cells, but pre1 was expressed weakly and only in mature ascospores. ppg1 or pre2 deletion mutations reduced fertility in self-fertilization tests by approximately 50%. Deltappg1 reduced male fertility and Deltapre2 reduced female fertility in outcrossing tests. In contrast, Deltappg2 and Deltapre1 had no discernible effects on sexual function. Deltappg1/Deltappg2 and Deltapre1/Deltapre2 double mutants had the same phenotype as the Deltappg1 and Deltapre2 single mutants. Thus, one of the putative pheromone-receptor pairs (ppg1/pre2) enhances, but is not essential for, selfing and outcrossing in G. zeae whereas no functional role was found for the other pair (ppg2/pre1).  相似文献   

20.
在先前的工作中,曾经运用简并PCR和染色体步行的方法从香菇中获得了1个信息素受体编码基因和1个信息素前体编码基因。根据香菇135菌株的原生质体单核体的全基因组测序信息,设计了4对引物,用于扩增香菇苏香菌株的原生质体单核体SUP2中的信息素受体编码基因STE-3的同源物及其侧翼保守基因。实验结果共获得了33,655bp的DNA序列,运用BlastX搜索对所获得的序列进行同源性分析后,发现了7个推定基因,其中有3个为信息素受体编码基因。再根据信息素前体所具有的保守基序特征,在2个信息素受体编码基因附近发现了4个信息素前体编码基因。首次对香菇的B交配型位点的分子遗传学结构有了比较全面的了解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号