首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood glutathione redox status in gestational hypertension   总被引:4,自引:0,他引:4  
Gestational hypertension during the third trimester reflects an exaggerated maternal inflammatory response to pregnancy. We hypothesized that oxidative stress present even in normal pregnancy becomes uncompensated in hypertensive patients. A glucose-6-phosphate dehydrogenase (G6PD) activity sufficient to meet the increased reductive equivalent need of the cells is indispensable for defense against oxidative stress. The erythrocyte glutathione redox system was studied, where G6PD is the only NADPH source. The glutathione (GSH) redox status was measured both in vivo and after an in vitro oxidative challenge in pregnant women with gestational hypertension (n = 19) vs. normotensive pregnant subjects (n = 18) and controls (n = 20). An erythrocyte GSH depletion with an increase in the oxidized form (GSSG) resulted in an elevated ratio GSSG/GSH (0.305 +/- 0.057; mean +/- SD) in hypertensive pregnant women vs. normotensive pregnant or control subjects (0.154 +/- 0.025; 0.168 +/- 0.073; p <.001). In hypertensive pregnant patients, a "GSH stability" decrease after an in vitro oxidative challenge suggested a reduced GSH recycling capacity resulting from an insufficient NADPH supply. The erythrocyte GSSG/GSH ratio may serve as an early and sensitive parameter of the oxidative imbalance and a relevant target for future clinical trials to control the effects of antioxidant treatment in women at increased risk of the pre-eclampsia syndrome.  相似文献   

2.
3.
The ability of certain cancer cells to maintain a highly reduced intracellular environment is correlated with aggressiveness and drug resistance. Since the glutathione (GSH) and thioredoxin (TRX) systems cooperate to a tight regulation of ROS in cell physiology, and to a stimulation of tumour initiation and progression, modulation of the GSH and TRX pathways are emerging as new potential targets in cancer. In vivo methods to assess changes in tumour redox status are critically needed to assess the relevance of redox-targeted agents. The current study assesses in vitro and in vivo biomarkers of tumour redox status in response to treatments targeting the GSH and TRX pathways, by comparing cytosolic and mitochondrial redox nitroxide electron paramagnetic resonance (EPR) probes, and cross-validation with redox dynamic fluorescent measurement. For that purpose, the effect of the GSH modulator buthionine sulfoximine (BSO) and of the TRX reductase inhibitor auranofin were measured in vitro using both cytosolic and mitochondrial EPR and roGFP probes in breast and cervical cancer cells. In vivo, mice bearing breast or cervical cancer xenografts were treated with the GSH or TRX modulators and monitored using the mito-TEMPO spin probe. Our data highlight the importance of using mitochondria-targeted spin probes to assess changes in tumour redox status induced by redox modulators. Further in vivo validation of the mito-tempo spin probe with alternative in vivo methods should be considered, yet the spin probe used in vivo in xenografts demonstrated sensitivity to the redox status modulators.  相似文献   

4.
Cellular defense system, including glutathione, glutathione-related enzymes, and antioxidant and redox enzymes, may play crucial roles in the aging of aerobic organisms. To understand the physiological roles of these factors in the aging process, their levels were compared in the livers and brains of 5-week- and 9-month-old rats. GST activity was higher in livers and brains of 9-month-old rats than in those of 5-week-old rats, and brain catalase activity was about 2-fold higher. However, it was unchanged in the livers of the 9-month-old rats. gamma-Glutamylcysteine synthetase activity was about 2-fold higher in the brains of the older rats but again not in their livers. In contrast glutathione synthetase activity appeared to be lower in the livers of the older rats while GSH content did not change with age in livers and brains. Glutathione peroxidase activity was higher in 9-month-old rat brains, but lower in 9-month-old rat livers, while superoxide dismutase activity was higher in both tissues in the older rats. The activities of two redox enzymes, thiol-transferase and thioredoxin reductase, did not change with age, nor did that of glutathione reductase. These results indicate that levels of different cellular defense systems vary with age in an irregular manner.  相似文献   

5.
Hypoxia maintained biological characteristics of CD34(+) cells through keeping lower intracellular reactive oxygen specials (ROS) levels. The effects of normoxia and hypoxia on antioxidant enzymes and glutathione redox state were compared in this study. Hypoxia decreased the mRNA expression of both catalase (CAT) and glutathione peroxidase (GPX), but not affected mRNAs expression of superoxide dismutase (SOD). While the cellular GPX activities under hypoxia were apparently less than those under normoxia, neither SOD activities nor CAT activities were affected by hypoxia. The analysis of glutathione redox status and ROS products showed the lower oxidized glutathione (GSSG) levels, the higher reduced glutathione (GSH) levels, the higher GSH/GSSG ratios, and the less O(2)- and H(2)O(2) generation under hypoxia (versus normoxia). Meanwhile more primary CD34(+)CD38(-) cells were obtained when cultivation was performed under hypoxia or with N-acetyl cysteine (the precursor of GSH) under normoxia. These results demonstrated the different responses of anti-oxidative mechanism between normoxia and hypoxia. Additionally, the present study suggested that the GSH-GPX antioxidant system played an important role in HSPCs preservation by reducing peroxidation.  相似文献   

6.
The cellular defense system (including glutathione, glutathione-related enzymes, antioxidant and redox enzymes) plays a crucial role in cell survival and growth in aerobic organisms. To understand its physiological role in tumor cells, the glutathione content and related enzyme activities in the human normal hepatic cell line, Chang and human hepatoma cell line, HepG2, were systematically measured and compared. Superoxide dismutase, catalase, and glutathione peroxidase activities are 2.8-, 4.3-, and 2.9-fold higher in HepG2 cells than in Chang cells. Total glutathione content is also about 1.4-fold higher in HepG2, which is supported by significant increases in gamma-glutamylcysteine synthetase and glutathione synthetase activities. Two other glutathione-related enzymes, glutathione reductase and gamma-glutamyltranspeptidase, are upregulated in HepG2 cells. However, thioredoxin reductase and glutathione S-transferase activities are significantly lower in HepG2 cells. These results propose that defense-related enzymes are largely modulated in tumor cells, which might be linked to their growth and maintenance.  相似文献   

7.
Cord blood has numerous facilities for life and used in many different areas. Cord blood contains many different catalytic proteins including antioxidant enzymes. Here we purified human cord blood glutathione reductase (hcbGR), glutathione S-transferase (hcbGST) and human cord blood glutathione peroxidase (hcbGPx) from human cord blood erythrocytes and analyzed the inhibition effects of the antibiotics incorporating cefuroxime, ceftriaxone, ceftizoxime and cefoperazone, on these enzymes. KI values for the drugs ranged from 10.42 to 28.72 µM for hcbGR, 32.7 to 244.8 µM for hcbGPx, and 32.39 to 267.3 µM for hcbGST. Cefuroxime caused the highest inhibition on all enzymes with KI values of 10.42, 32.39, 32.7 µM for hcbGR, hcbGST, and hcbGPx, respectively. All drugs displayed non-competitive inhibition regardless of their structures. Since these drugs are often used during pregnancy, identification of possible undesired impacts on various parameters has a great importance for pharmacological and medical applications.  相似文献   

8.
Brain and liver mitochondria isolated by a discontinuous Percoll gradient show an oxidized redox environment, which is reflected by low GSH levels and high GSSG levels and significant glutathionylation of mitochondrial proteins as well as by low NAD(P)H/NAD(P) values. The redox potential of brain mitochondria isolated by a discontinuous Percoll gradient method was calculated to be -171 mV based on GSH and GSSG concentrations. Immunoblotting and LC/MS/MS analysis revealed that succinyl-CoA transferase and ATP synthase (F(1) complex, α-subunit) were extensively glutathionylated; S-glutathionylation of these proteins resulted in a substantial decrease of activity. Supplementation of mitochondria with complex I or complex II respiratory substrates (malate/glutamate or succinate, respectively) increased NADH and NADPH levels, resulting in the restoration of GSH levels through reduction of GSSG and deglutathionylation of mitochondrial proteins. Under these conditions, the redox potential of brain mitochondria was calculated to be -291 mV. Supplementation of mitochondria with respiratory substrates prevented GSSG formation and, consequently, ATP synthase glutathionylation in response to H(2)O(2) challenges. ATP synthase appears to be the major mitochondrial protein that becomes glutathionylated under oxidative stress conditions. Glutathionylation of mitochondrial proteins is a major consequence of oxidative stress, and respiratory substrates are key regulators of mitochondrial redox status (as reflected by thiol/disulfide exchange) by maintaining mitochondrial NADPH levels.  相似文献   

9.
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.  相似文献   

10.
The oxidant stress-inducing effects of endosulfan, a chlorinated hydrocarbon insecticide of the cyclodiene group, have been examined following ig administration of single and repeated doses. A single dose of 30 mg/kg (∼30% LD50) endosulfan significantly (p<0.001) increased the TBARS and, hence, the lipid peroxidation in cerebral and hepatic tissues of rats. Administration of endosulfan with doses of 10 or 15 mg/kg/d for 5 d has also induced lipid peroxidation significantly (p<0.05). The same doses caused a significant alteration in glutathione redox status of cerebral and hepatic tissues, where total glutathione and oxidized glutathione were measured by an enzymatic cycling procedure. Selenium levels were also determined and compared with controls. With repeated doses, oxidant stress was more pronounced in cerebral tissue, where endosulfan shows a GABA-antagonistic activity. The possible relationship between the neurotoxicity of endosulfan and its oxidant stress-inducing effect was discussed.  相似文献   

11.
12.
13.
Glutathione (gamma-glutamylcysteinylglycine) is one of the major antioxidants in the body. The present study investigated the changes of glutathione status, oxidative injury, and antioxidant enzyme systems after an exhaustive bout of treadmill running and/or hydroperoxide injection in male Sprague-Dawley rats. Concentrations of total and reduced glutathione in deep vastus lateralis muscle were significantly increased (P less than 0.01) after exhaustive exercise with either hydroperoxide (t-butyl hydroperoxide) or saline injection, whereas hydroperoxide alone had no significant effect. Exhaustive exercise increased muscle glutathione disulfide content by 75 and 60% (P less than 0.05), respectively, in hydroperoxide and saline groups. Concentrations of glutathione-related amino acids glutamate, cysteine, and aspartate were significantly increased in the same muscle after exhaustion. Hepatic glutathione status was not affected by either hydroperoxide injection or exercise. Glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities were significantly elevated after exhaustive exercise with or without hydroperoxide injection in muscle but not in liver. Hydroperoxide and exhaustive exercise enhanced lipid peroxidation in muscle and liver, respectively. It is concluded that exhaustive exercise can impose a severe oxidative stress on skeletal muscle and that glutathione systems as well as antioxidant enzymes are important in coping with free radical-mediated muscle injury.  相似文献   

14.
The relative contributions of catalase and the selenoenzyme glutathione peroxidase (GSH-Px) were elucidated in the rat liver by selectively modulating the activities of these enzymes using dietary selenium (Se) and the catalase inhibitor 3-amino-1,2,4-triazole (3-AT). Increased peroxidation occurred only in Se-deficient rats with markedly reduced cytosolic and mitochondrial GSH-Px activities. Although 3-AT treatment resulted in a 75% reduction of hepatic catalase activity and also a 20% reduction of both cytosolic and mitochondrial superoxide dismutase (SOD) activity, no incremental increase in peroxidation was observed over that associated with Se deficiency. In Se-deficient animals, treatment with 3-AT resulted in a doubling of cytosolic GSH-Px. This was associated with a 49% elevation in hepatic Se suggesting that increased Se may have contributed to the enhanced GSH-Px activity. These results suggest that GSH-Px plays the pivotal role in preventing hepatic peroxidation. Furthermore, the effects of 3-AT in vivo are not restricted to inhibition of catalase activity insofar as it also affects cytosolic GSH-Px activity and cytosolic and mitochondrial SOD activities.  相似文献   

15.
The flavoenzyme glutathione reductase catalyses electron transfer reactions between two major intracellular redox buffers, namely the NADPH/NADP+ couple and the 2 glutathione/glutathione disulfide couple. On this account, microcrystals of the enzyme were tested as redox probes of intracellular compartments. For introducing protein crystals into human fibroblasts, different methods (microinjection, particle bombardment and optical tweezers) were explored and compared. When glutathione reductase crystals are present in a cytosolic environment, the transition of the yellow Eox form to the orange-red 2-electron reduced charge transfer form, EH2, is observed. Taking into account the midpoint potential of the Eox/EH2 couple, the redox potential of the cytosol was found to be < -270 mV at pH 7.4 and 37 degrees C. As a general conclusion, competent proteins in crystalline--that is signal-amplifying--form are promising probes for studying intracellular events.  相似文献   

16.
The five major antioxidants enzymes, cytochrome oxidase (COX), GSH, and GSSG, and endogenous and in vitro stimulated lipid peroxidation (TBA-RS) were assayed in the lung of old (28 months) and young (9 months) adult rats due to the almost total absence of data of this kind in this tissue, which is normally exposed to relatively high pO2 throughout life. Catalase, selenium (Se)-dependent GSH peroxidase (GPx), GSH reductase, GSH, GSSG, GSSG/GSH, and in vivo and in vitro TBA-RS showed similar values in old and young animals. The decrease observed for non Se-dependent GPx disappeared when the values were expressed in relation to COX activity. Only superoxide dismutase showed a clear decrease when referred both to protein and COX activity. These results suggest that lung aging is not accelerated in old age due to a decrease in the antioxidant capacity of the tissue. Nevertheless, they are compatible with a continuous damage of the lung tissue by free radicals throughout the life span.  相似文献   

17.
Aging alters cellular responses to both heat and oxidative stress. Thiol-mediated metabolism of reactive oxygen species (ROS) is believed to be important in aging. To begin to determine the role of thiols in aging and heat stress, we depleted liver glutathione (GSH) by administering l-buthionine sulfoximine (BSO) in young (6 mo) and old (24 mo) Fisher 344 rats before heat stress. Animals were given BSO (4 mmol/kg ip) or saline (1 ml ip) 2 h before heat stress and subsequently heated to a core temperature of 41 degrees C over a 90-min period. Liver tissue was collected before and 0, 30, and 60 min after heat stress. BSO inhibited glutamate cysteine ligase (GCL, the rate-limiting enzyme in GSH synthesis) catalytic activity and resulted in a decline in liver GSH and GSSG that was more pronounced in young compared with old animals. Catalase activity did not change between groups until 60 min after heat stress in young BSO-treated rats. Young animals experienced a substantial and persistent reduction in Cu,Zn-SOD activity with BSO treatment. Mn-SOD activity increased with BSO but declined after heat stress. The differences in thiol depletion observed between young and old animals with BSO treatment may be indicative of age-related differences in GSH compartmentalization that could have an impact on maintenance of redox homeostasis and antioxidant balance immediately after a physiologically relevant stress. The significant changes in antioxidant enzyme activity after GSH depletion suggest that thiol status can influence the regulation of other antioxidant enzymes.  相似文献   

18.
This study was aimed to evaluate the oxidative damage, production of reactive oxygen species and the status of antioxidative defenses following cerebral GSH depletion induced by two classical depletors, diethylmaleate (DEM, 3 mmol/kg, i.p.) and phorone (PHO, 4 mmol/kg, i.p.). The treatment decreased (40-43%) brain glutathione levels at 2 h, followed by a partial recovery at 24 h. Cerebral glutathione depletion by these agents increased the levels of superoxide anion and hydroxyl radical at both the time intervals; however, hydrogen peroxide was high at 24 h only. It also produced a dramatic increase in the protein carbonyls at 2 h but not at 24h, without any significant effect on lipid peroxidation and conjugated diene levels. These rats showed a significantly lowered superoxide dismutase activity both at 2 h and 24 h of exposure, as compared to controls. Glutathione depletion enhanced catalase activity markedly at 2 h, followed by some recovery at 24 h. While Se-independent glutathione peroxidase (GPx) and glutathione S-transferase activities were increased at both 2 and 24 h time intervals, Se-dependent GPx and glucose-6-phosphate dehydrogenase were induced at 2 h only. Glutathione depletion decreased ceruloplasmin and vitamin E levels significantly at 2 h. However, ascorbic acid remained unaffected. It may be concluded that an acute cerebral glutathione depletion generates higher levels of reactive oxygen species, which may be responsible for oxidative modification of proteins. Some of these changes appear to recover soon after an activation of a variety of cellular antioxidant defense mechanisms and glutathione restoration. It appears that central nervous system is highly vulnerable to oxidative damage following a moderate glutathione depletion that may result from certain diseases or xenobiotic exposures.  相似文献   

19.
In fish, as in other aerobic organisms, glutathione and glutathione-related enzymes are important components in the defences against oxidative stress. To study if hepatic glutathione levels and/or activities of glutathione-related enzymes can act as indicators of oxidative stress in fish, we injected rainbow trout (Oncorhynchus mykiss) intraperitoneally with paraquat (PQ), menadione (MD), naphthazarin (DHNQ), or beta-naphthoflavone (beta-NF), all known to cause a rise in reactive oxygen species (ROS). After 2 and 5 days of exposure, we measured the activities of hepatic glutathione peroxidase (GPox), glutathione S-transferase (GST), gamma-glutamylcysteine synthetase (GCS), and glutathione reductase (GR). We also measured total glutathione (tGSH) and oxidised glutathione (GSSG) in the liver of fish treated with PQ and MD. All chemicals caused an increase in GR activity after 5 days, which ranged from 160% in fish treated with beta-NF to 1,500% in fish treated with PQ. All chemicals except beta-NF caused moderate elevation in GST activity; GPox activity was lower in fish treated with DHNQ and MD, while GCS activity increased twofold in the fish treated with DHNQ, without being affected by beta-NF, PQ or MD. After 5 days of treatment with PQ or MD, tGSH content was elevated. Our findings demonstrated that of the parameters included in the study, GR activity was the most responsive to treatment with redox cycling compounds, indicating that GR activity is a promising biomarker of such compounds and possibly indicating oxidative stress in rainbow trout.  相似文献   

20.
ATP- and ubiquitin-independent proteolysis by the 20S proteasome is responsible for the selective degradation of oxidized proteins. In vitro, the 20S proteasome shows an increased proteolytic activity toward oxidized polypeptides and the suc-LLVY-MCA peptide specific for its chymotrypsin-like activity. We have analyzed the effect of the intracellular redox status on the chymotrypsin-like activity of the 20S proteasome in human T47D cells overexpressing the detoxifiant enzyme seleno-glutathione peroxidase-1 (GPx-1). We report a 30% decreased activity of the chymotrypsin-like activity in cells overexpressing GPx-1. This phenomenon correlated with a 2-fold increase in IkappaB alpha half-life, a protein whose basal turnover is 20S proteasome-dependent. Following exposure to H2O2, these cells showed a seleno-dependently decreased accumulation of intracellular reactive oxygen species and 20S proteasome chymotrypsin-like activity. Similar results were obtained in HeLa cells transiently overexpressing human GPx-1. Moreover, exposure of HeLa cells to antioxidant compounds reduced the proteasome 20S chymotrypsin-like activity. In contrast, no effects were observed when HeLa cell extracts used to determine proteasome activity were incubated with either reduced or oxidized glutathione. These results suggest that GPx-1 activity or pro-reducing conditions can downregulate basal 20S proteasome activity. Hence, the intracellular redox status, probably through the level of oxidized proteins, is an important element that can either activate or down-regulate the 20S proteasome chymotrypsin-like activity in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号