首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(7):911-913
Atg8 and its mammalian homolog LC3, ubiquitin-like proteins (Ubls) required for autophagosome formation, are remarkably unique in that their conjugation target is the lipid phosphatidylethanolamine (PE). Although PE was identified as the sole lipid conjugated with Atg8/LC3 in vivo, phosphatidylserine (PS) can be also a good substrate for its conjugation reaction in vitro. This posed a simple, intriguing question: What confers substrate specificity to lipidation of Atg8/LC3 in vivo? Our recent in vitro studies propose that intracellular milieus such as cytosolic pH and acidic phospholipids in membranes significantly contribute to selective production of the Atg8¬¬–PE conjugate.1

Addendum to: Oh-oka K, Nakatogawa H, Ohsumi Y. Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J Biol Chem 2008; 10.1074/jbc.M801836200.  相似文献   

2.
3.
4.
Two techniques for determining enzyme kinetic constants using isothermal titration microcalorimetry are presented. The methods are based on the proportionality between the rate of a reaction and the thermal power (heat/time) generated. (i) An enzyme can be titrated with increasing amounts of substrate, while pseudo-first-order conditions are maintained. (ii) Following a single injection, the change in thermal power as substrate is depleted can be continuously monitored. Both methods allow highly precise kinetic characterization in a single experiment and can be used to measure enzyme inhibition. Applicability is demonstrated using a representative enzyme from each EC classification, including (i) oxidation-reduction activity of DHFR (EC 1.5.1.3); (ii) transferase activity of creatine phosphokinase (EC 2.7.3.2) and hexokinase (EC 2.7.1.1); (iii) hydrolytic activity of Helicobacter pylori urease (EC 3.5.1.5), trypsin (EC 3.4.21.4), and the HIV-1 protease (EC 3.4.21.16); (iv) lyase activity of heparinase (EC 4.1.1.7); and (v) ligase activity of pyruvate carboxylate (EC 6.4.1.1). This nondestructive method is completely general, enabling precise analysis of reactions in spectroscopically opaque solutions, using physiological substrates. Such a universal assay may have wide applicability in functional genomics.  相似文献   

5.
Glycans of glycoproteins are often associated with IgE mediated allergic immune responses. Hymenoptera venoms, e.g., carry α1,3-fucosyl residues linked to the proximal GlcNAc of glycoproteins. This epitope, formed selectively by α1,3-fucosyltransferase (FucTA), is xenobiotic and as such highly immunogenic and it also shows cross-reactivity if present on different proteins. Production of post-translationally modified proteins in insect cells is however commonly used and, thus, resulting glycoproteins can carry this highly immunogenic epitope with potentially significant side effects on mammals. To analyze mechanism, specificity and reaction kinetics of the key enzyme, we chose FucTA from Apis mellifera (honeybee) and characterized it by saturation transfer difference (STD) NMR and surface plasmon resonance (SPR) experiments. Specifically, we show here that the donor substrate, GDP-Fucose, binds mostly via its guanine and less so via pyrophosphate and fucosyl fragments and has a KD = 37 μM. Affinity and kinetic studies with both the core α1,6-fucosylated and the unfucosylated octa- or heptasaccharides, respectively, as acceptor substrate revealed that honeybee FucTA prefers the latter structure with affinities of KD ~ 10 mM. Establishment of progress curve analysis using an explicit solution of the integrated Michaelis–Menten equation allowed for determination of key constants of the transfer reaction of the glycosyl residue. The dominant minimum acceptor substrate is an unfucosylated heptasaccharide with Km = 420 μM and kcat = 6 min?1. Time-resolved NMR spectra as well as STD NMR allow molecular insights into specificity, activity and interaction of the enzyme with substrates and acceptors.  相似文献   

6.
Substrate antagonism has been described for a variety of enzymes with more than one substrate and is characterized by a lowering of the affinity of one substrate in the presence of the other(s). 3-Phosphoglycerate kinase (PGK) catalyzes phosphotransfer from 1,3-bisphosphoglycerate (bPG) to ADP to give 3-phosphoglycerate (PG) and ATP, and is subject to substrate antagonism. Because of the instability of bPG, antagonism has only been described between PG and ATP or ADP. Here, we show that antagonism also occurs between bPG and ADP. Using the stopped-flow method, we show that the dissociation constant for one substrate increases in the presence of the other, and that this decrease in affinity is mainly due to an increase in the dissociation rate constant. As a consequence, there is an increase in the overall interaction kinetics. Interestingly, in the presence of the mirror image of natural d-ADP, l-ADP (a good substrate for PGK), antagonism is absent. Using rapid-quench-flow, we studied the kinetics of ATP formation. The time courses present the following: (1) a lag with l-ADP, but not with d-ADP, the kinetics of which were similar to the interaction kinetics measured by stopped-flow; (2) a burst that is directed by the phosphotransfer; and (3) a steady-state that is rate limited by the release of product kinetics. Structural explanations for these results are proposed by analyzing the crystallographic structure of the fully closed conformation of PGK in complex with l-ADP, PG, and the transition-state analogue AlF4 compared to previously determined structures.  相似文献   

7.
The evolutionary advent of uterine support of embryonic growth in mammals is relatively recent. Nonetheless, striking differences in the earliest steps of embryogenesis make it difficult to draw parallels even with other chordates. We suggest that use of fertilization as a reference point misaligns the earliest stages and masks parallels that are evident when development is aligned at conserved stages surrounding gastrulation. In externally deposited eggs from representatives of all the major phyla, gastrulation is preceded by specialized extremely rapid cleavage cell cycles. Mammals also exhibit remarkably fast cell cycles in close association with gastrulation, but instead of beginning development with these rapid cycles, the mammalian egg first devotes itself to the production of extraembryonic structures. Previous attempts to identify common features of cleavage cycles focused on post-fertilization divisions of the mammalian egg. We propose that comparison to the rapid peri-gastrulation cycles is more appropriate and suggest that these cycles are related by evolutionary descent to the early cleavage stages of embryos such as those of frog and fly. The deferral of events in mammalian embryogenesis might be due to an evolutionary shift in the timing of fertilization.  相似文献   

8.
The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity.  相似文献   

9.
Researchers who use protein binders in multiplexed assays can be divided into two camps. One believes that arrays with proteome-wide coverage will become a reality once we have developed binders for all proteins. The sceptics claim that detection with immobilized protein binders and sample labelling will not provide the required specificity. In this article, we review the evidence showing that antibody array analysis of labelled samples can provide meaningful data and discuss the issues raised by the sceptics. We argue that direct the evidence for monospecificity has yet to be published. This will require assays designed to resolve the proteins captured by each binder. One option is to combine array measurement with protein separation. We have developed an assay where labelled sample proteins are separated by size exclusion chromatography (SEC) before contact with microsphere-based arrays (Size-MAP; size exclusion chromatography-resolved microsphere-based affinity proteomics). The effect is an 'antibody array Western blot' where reactivity of immobilized binders is resolved against the size of the proteins in the sample. We show that Size-MAP is useful to discriminate monospecific- and polyreactive antibodies and for automatic detection of reacting with the same target. The possibility to test specificity directly in array-based measurement should be useful to select the best binders and to determine whether the DNA microarray for the proteome is a realistic goal or not.  相似文献   

10.
Galaxias maculatus is one of the world's most widely distributed freshwater fish. This species has a marine-tolerant juvenile phase, and a geographical range extending through much of the southern hemisphere. We conducted phylogeographic analyses of 163 control region haplotypes of G. maculatus, including samples from New Zealand (five locations), Tasmania (one location) and Chile (one location). A lack of genetic structure among New Zealand samples suggests that marine dispersal facilitates considerable gene flow on an intra-continental scale. The discovery of a Tasmanian-like haplotype in one of 144 New Zealand samples indicates that inter-continental marine dispersal occurs but is insufficient to prevent mitochondrial DNA differentiation among continents. The sister relationship of Tasmanian and New Zealand clades implies that marine dispersal is an important biogeographical mechanism for this species. However, a vicariant role in the divergence of eastern and western Pacific G. maculatus cannot be rejected.  相似文献   

11.
A large protein complex consisting of Atg5, Atg12 and Atg16L1 has recently been shown to be essential for the elongation of isolation membranes (also called phagophores) during mammalian autophagy. However, the precise function and regulation of the Atg12–5-16L1 complex has largely remained unknown. In this study we identified a novel isoform of mammalian Atg16L, termed Atg16L2, that consists of the same domain structures as Atg16L1. Biochemical analysis revealed that Atg16L2 interacts with Atg5 and self-oligomerizes to form an ~800-kDa complex, the same as Atg16L1 does. A subcellular distribution analysis indicated that, despite forming the Atg12–5-16L2 complex, Atg16L2 is not recruited to phagophores and is mostly present in the cytosol. The results also showed that Atg16L2 is unable to compensate for the function of Atg16L1 in autophagosome formation, and knockdown of endogenous Atg16L2 did not affect autophagosome formation, indicating that Atg16L2 does not possess the ability to mediate canonical autophagy. Moreover, a chimeric analysis between Atg16L1 and Atg16L2 revealed that their difference in function in regard to autophagy is entirely attributable to the difference between their middle regions that contain a coiled-coil domain. Based on the above findings, we propose that formation of the Atg12–5-16L complex is necessary but insufficient to mediate mammalian autophagy and that an additional function of the middle region (especially around amino acid residues 229–242) of Atg16L1 (e.g., interaction with an unidentified binding partner on phagophores) is required for autophagosome formation.  相似文献   

12.
《Autophagy》2013,9(12):1500-1513
A large protein complex consisting of Atg5, Atg12 and Atg16L1 has recently been shown to be essential for the elongation of isolation membranes (also called phagophores) during mammalian autophagy. However, the precise function and regulation of the Atg12–5-16L1 complex has largely remained unknown. In this study we identified a novel isoform of mammalian Atg16L, termed Atg16L2, that consists of the same domain structures as Atg16L1. Biochemical analysis revealed that Atg16L2 interacts with Atg5 and self-oligomerizes to form an ~800-kDa complex, the same as Atg16L1 does. A subcellular distribution analysis indicated that, despite forming the Atg12–5-16L2 complex, Atg16L2 is not recruited to phagophores and is mostly present in the cytosol. The results also showed that Atg16L2 is unable to compensate for the function of Atg16L1 in autophagosome formation, and knockdown of endogenous Atg16L2 did not affect autophagosome formation, indicating that Atg16L2 does not possess the ability to mediate canonical autophagy. Moreover, a chimeric analysis between Atg16L1 and Atg16L2 revealed that their difference in function in regard to autophagy is entirely attributable to the difference between their middle regions that contain a coiled-coil domain. Based on the above findings, we propose that formation of the Atg12–5-16L complex is necessary but insufficient to mediate mammalian autophagy and that an additional function of the middle region (especially around amino acid residues 229–242) of Atg16L1 (e.g., interaction with an unidentified binding partner on phagophores) is required for autophagosome formation.  相似文献   

13.
Studies of cytokine expression in rheumatoid arthritis have provided key insights into the pathogenesis of disease and have offered clues for effective therapy. Patterns of T-cell products in chronic rheumatoid synovitis suggest that T helper type 1 cells contribute to the perpetuation of disease. However, there is no guarantee that the mechanisms of late disease are identical to very early rheumatoid arthritis. Evaluation of the cytokine profile at the earliest time points after onset of symptoms could identify novel targets that prevent progression to chronic arthritis.  相似文献   

14.
Multiple functions of insulin-degrading enzyme: a metabolic crosslight?   总被引:1,自引:0,他引:1  
Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as β-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the “aggregopathies” and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin–proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the “quality control” machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.  相似文献   

15.
A hallmark of the pathogenic lifestyle is the secretion of enzymes and other effectors that dysregulate host signaling. Intriguingly, the most potent virulence locus identified in the intracellular parasite Toxoplasma gondii encodes a family of related catalytically inactive protein kinases, or pseudokinases. Toxoplasma has in its kinome among the highest percentage of pseudokinases among all sequenced organisms, and the majority of these appear to be secreted into the host cell. We posit that the pseudokinase fold represents a particularly well-suited domain for functional diversification, discuss the relevance of gene expansion at these loci, and outline potential mechanisms by which a pseudokinase might affect host signaling.  相似文献   

16.
When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant-pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds. However, as most papers focus on incompatible interactions, there is still a lack of understanding about the similarities and differences between compatible and incompatible situations. This review targets the question of specificity in Solanaceae-pathogen interactions, by comparing defence patterns in plants challenged with virulent or avirulent pathogens (or with pathogen-associated molecular patterns from these). A special emphasis is made on analysing whether defence reactions in Solanaceae depend primarily on the type of elicitor, on the plant genotype/species, or on the type of interaction (compatible or incompatible).  相似文献   

17.
UDP-GlcNAc: Man3R 2-N-acetylglucosaminyltransferase I (GlcNAc-T I; EC 2.4.1.101) is the key enzyme in the synthesis of complex and hybrid N-glycans. Rat liver GlcNAc-T I has been purified more than 25,000-fold (M r 42,000). TheV max for the pure enzyme with [Man6(Man3)Man6](Man3)Man4GlcNAc4GlcNAc-Asn as substrate was 4.6 µmol min–1 mg–1. Structural analysis of the enzyme product by proton nuclear magnetic resonance spectroscopy proved that the enzyme adds anN-acetylglucosamine (GlcNAc) residue in 1–2 linkage to the Man3Man-terminus of the substrate. Several derivatives of Man6(Man3)Man-R, a substrate for the enzyme, were synthesized and tested as substrates and inhibitors. An unsubstituted equatorial 4-hydroxyl and an axial 2-hydroxyl on the -linked mannose of Man6(Man3)Man-R are essential for GlcNAc-T I activity. Elimination of the 4-hydroxyl of the 3-linked mannose (Man) of the substrate increases theK M 20-fold. Modifications on the 6-linked mannose or on the core structure affect mainly theK M and to a lesser degree theV max, e.g., substitutions of the Man6 residue at the 2-position by GlcNAc or at the 3- and 6-positions by mannose lower theK M, whereas various other substitutions at the 3-position increase theK M slightly. Man6(Man3)4-O-methyl-Man4GlcNAc was found to be a weak inhibitor of GlcNAc-T I.Abbreviations BSA Bovine serum albumin - Bn benzyl - Fuc, F l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - Glc d-glucose - GlcNAc, Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man, M d-mannose - mco 8-methoxycarbonyl-octyl, (CH2)8 COOOCH3 - Me methyl - MES 2-(N-morpholino)ethanesulfonate - NMR nuclear magnetic resonance - PMSF phenylmethylsulfonylfluoride - pnp p-nitrophenyl - SDS sodium dodecyl sulfate - T transferase - Tal d-talose - Xyl d-xylose; - {0, 2 + F} Man6 (GlcNAc2Man3) Man4GlcNAc4 (Fuc6) GlcNAc - {2, 2} GlcNAc2Man6 (GlcNAc2Man3) Man4GlcNAc4GlcNAc; M5-glycopeptide, Man6 (Man3) Man6 (Man3) Man4 GlcNAc4GlcNAc-Asn Enzymes: GlcNAc-transferase I, EC 2.4.1.101; GlcNAc-transferase II, EC 2.4.1.143; GlcNAc-transferase III, EC 2.4.1.144; GlcNAc-transferase IV, EC 2.4.1.145; GlcNAc-transferase V, UDP-GlcNAc: GlcNAc2 Man6-R (GlcNAc to Man) 6-GlcNAc-transferase; GlcNAc-transferase VI, UDP-GlcNAc: GlcNAc6(GlcNAc2) Man6-R (GlcNAc to Man) 4-GlcNAc-transferase; Core 1 3-Gal-transferase, EC 2.4.1.122; 4-Gal-transferase, EC 2.4.1.38; 3-Gal-transferase, UDP-Gal: GlcNAc-R 3-Gal-transferase; blood group i 3-GlcNAc-transferase, EC 2.4.1.149; blood group I 6-GlcNAc-transferase, UDP-GlcNAc: GlcNAc3Gal-R (GlcNAc to Gal) 6-GlcNAc-transferase.  相似文献   

18.
Shepherd GM 《Neuron》2005,46(2):166-168
The olfactory system has generated considerable interest in recent years, mainly focused on receptor genes and early olfactory processing. In this issue of Neuron, Mori et al. focus centrally, providing evidence for slow- and fast-wave states in olfactory cortex that appear to gate the inflow of information underlying conscious smell perception.  相似文献   

19.
A comparison of the sequences of three homologous ribonucleases (RNase A, angiogenin and bovine seminal RNase) identifies three surface loops that are highly variable between the three proteins. Two hypotheses were contrasted: (i) that this variation might be responsible for the different catalytic activities of the three proteins; and (ii) that this variation is simply an example of surface loops undergoing rapid neutral divergence in sequence. Three hybrids of angiogenin and bovine pancreatic ribonuclease (RNase) A were prepared where regions in these loops taken from angiogenin were inserted into RNase A. Two of the three hybrids had unremarkable catalytic properties. However, the RNase A mutant containing residues 63-74 of angiogenin had greatly diminished catalytic activity against uridylyl-(3'----5')-adenosine (UpA), and slightly increased catalytic activity as an inhibitor of translation in vitro. Both catalytic behaviors are characteristic of angiogenin. This is one of the first examples of an engineered external loop in a protein. Further, these results are complementary to those recently obtained from the complementary experiment, where residues 59-70 of RNase were inserted into angiogenin [Harper and Vallee (1989) Biochemistry, 28, 1875-1884]. Thus, the external loop in residues 63-74 of RNase A appears to behave, at least in part, as an interchangeable 'module' that influences substrate specificity in an enzyme in a way that is isolated from the influences of other regions in the protein.  相似文献   

20.
Robb T  Forbes MR 《Biology letters》2005,1(2):118-120
Hosts often differ in their degree of parasitism and their expression of resistance. Yet very little is known about how the availability (and allocation) of resources to parasites at pre-infective stages influences their success in initiating parasitism, or in inducing and succumbing to resistance from hosts. We studied a damselfly-mite association to address how experimental variation in the age of first contact with hosts (timing) influenced subsequent parasite fitness. We demonstrate that timing influenced the ability of larval mites to make the transition to parasitism, but was not associated with measures of physiological resistance by hosts. Timing presumably relates to the availability of resources remaining for individuals to exploit their hosts. More research is needed on the importance of such factors, from variation in host resistance and parasite success and, ultimately, to the numbers and distributions of parasites on hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号