首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eosinophils are potent inflammatory cells with numerous immune functions, including antigen presentation and exacerbation of inflammatory responses through their capacity to release a range of largely preformed cytokines and lipid mediators. Thus, timely regulation of eosinophil activation and apoptosis is crucial to develop beneficial immune response and to avoid tissue damage and induce resolution of inflammation. Natural Killer (NK) cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and eosinophils. Co-culture experiments revealed that human NK cells could trigger autologous eosinophil activation, as shown by up-regulation of CD69 and down-regulation of CD62L, as well as degranulation, evidenced by increased CD63 surface expression, secretion of eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN). Moreover, NK cells significantly and dose dependently increased eosinophil apoptosis as shown by annexin V and propidium iodide (PI) staining. Direct contact was necessary for eosinophil degranulation and apoptosis. Increased expression of phosphorylated extracellular signal-regulated kinase (ERK) in cocultured eosinophils and inhibition of eosinophil CD63 expression by pharmacologic inhibitors suggest that MAPK and PI3K pathways are involved in NK cell-induced eosinophil degranulation. Finally, we showed that NK cells increased reactive oxygen species (ROS) expression by eosinophils in co-culture and that mitochondrial inhibitors (rotenone and antimycin) partially diminished NK cell-induced eosinophil apoptosis, suggesting the implication of mitochondrial ROS in NK cell-induced eosinophil apoptosis. Pan-caspase inhibitor (ZVAD-FMK) only slightly decreased eosinophil apoptosis in coculture. Altogether, our results suggest that NK cells regulate eosinophil functions by inducing their activation and their apoptosis.  相似文献   

2.
Eosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events. Here, we review the multifaceted functions of eosinophils in innate immunity that are currently known, and discuss new avenues in this evolving story.  相似文献   

3.
Regulatory effect of cytokines on eosinophil degranulation   总被引:17,自引:0,他引:17  
We tested the effects of different cytokines on IgA- and IgG-induced eosinophil degranulation in vitro to determine the potential interaction between eosinophils and mononuclear cells. Purified normodense eosinophils were incubated with cytokines (including rIL-1, rIL-2, rIL-3, rIL-4, rIL-5, rIL-6, IFN-gamma, granulocyte-macrophage CSF stimulating factor (GM-CSF), and TNF) for 1 to 3 h after which Ig-coupled Sepharose 4B beads were added as targets and the mixtures were incubated with the eosinophils at 37 degrees C for 4 h. The Ig used were secretory IgA (sIgA), serum IgA and IgG, and myeloma IgA and IgG. The release of eosinophil-derived neurotoxin (EDN) was measured by RIA as an index of degranulation. rIL-5 was the most potent enhancer of Ig-induced degranulation and increased EDN release by 48% for sIgA and 136% for IgG. The effect of rIL-5 appeared as quickly as 15 min after incubation of eosinophils, sIgA beads and IL-5. GM-CSF and rIL-3 also enhanced Ig-induced EDN release but less potently than rIL-5. GM-CSF and rIL-5 by themselves induced a small but significant release of EDN from eosinophils in the absence of Ig-coated beads; rIL-3 did not. However, IFN-gamma suppressed sIgA-induced EDN release by 23%. The other cytokines did not have any effect on eosinophil degranulation. These results suggest that cytokines which induce eosinophil differentiation and proliferation during hematopoiesis also enhance the effector function of mature eosinophils and that IFN-gamma partially down-regulates eosinophil degranulation.  相似文献   

4.
Eosinophils are abundant in the lamina propria of the small intestine, but they rarely show degranulation in situ under steady-state conditions. In this study, using two novel mAbs, we found that intestinal eosinophils constitutively expressed a high level of an inhibitory receptor signal regulatory protein α (SIRPα)/CD172a and a low, but significant, level of a tetraspanin CD63, whose upregulation is closely associated with degranulation. Cross-linking SIRPα/CD172a on the surface of wild-type eosinophils significantly inhibited the release of eosinophil peroxidase induced by the calcium ionophore A23187, whereas this cross-linking effect was not observed in eosinophils isolated from mice expressing a mutated SIRPα/CD172a that lacks most of its cytoplasmic domain (SIRPα Cyto(-/-)). The SIRPα Cyto(-/-) eosinophils showed reduced viability, increased CD63 expression, and increased eosinophil peroxidase release with or without A23187 stimulation in vitro. In addition, SIRPα Cyto(-/-) mice showed increased frequencies of Annexin V-binding eosinophils and free MBP(+)CD63(+) extracellular granules, as well as increased tissue remodeling in the small intestine under steady-state conditions. Mice deficient in CD47, which is a ligand for SIRPα/CD172a, recapitulated these phenomena. Moreover, during Th2-biased inflammation, increased eosinophil cell death and degranulation were obvious in a number of tissues, including the small intestine, in the SIRPα Cyto(-/-) mice compared with wild-type mice. Collectively, our results indicated that SIRPα/CD172a regulates eosinophil homeostasis, probably by interacting with CD47, with substantial effects on eosinophil survival. Thus, SIRPα/CD172a is a potential therapeutic target for eosinophil-associated diseases.  相似文献   

5.
Peripheral blood and tissue eosinophilia is a prominent feature in allergic diseases and helminth infections. In cancer patients, tumor-associated tissue eosinophilia is frequently observed. Tumor-associated tissue eosinophilia can be associated with a favorable prognosis, notably in colorectal carcinoma. However, underlying mechanisms of eosinophil contribution to antitumor responses are poorly understood. We have in this study investigated the direct interactions of human eosinophils with Colo-205, a colorectal carcinoma cell line, and show that eosinophils induce apoptosis and directly kill tumor cells. Using blocking Abs, we found that CD11a/CD18 complex is involved in the tumoricidal activity. Coculture of eosinophils with Colo-205 led to the release of eosinophil cationic protein and eosinophil-derived neurotoxin as well as TNF-α secretion. Moreover, eosinophils expressed granzyme A, which was released upon interaction with Colo-205, whereas cytotoxicity was partially inhibited by FUT-175, an inhibitor of trypsin-like enzymatic activity. Our data present the first demonstration, to our knowledge, that granzyme A is a cytotoxic mediator of the eosinophil protein arsenal, exerting eosinophil tumoricidal activity toward Colo-205, and provide mechanistic evidence for innate responses of eosinophil against tumor cells.  相似文献   

6.
Eosinophils produce and release various proinflammatory mediators and also show immunomodulatory and tissue remodeling functions; thus, eosinophils may be involved in the pathophysiology of asthma and other eosinophilic disorders as well as host defense. Several major questions still remain. For example, how do human eosinophils become activated in diseased tissues or at the site of an immune response? What types of host immunity might potentially involve eosinophils? Herein, we found that human eosinophils react vigorously to a common environmental fungus, Alternaria alternata, which is implicated in the development and/or exacerbation of human asthma. Eosinophils release their cytotoxic granule proteins, such as eosinophil-derived neurotoxin and major basic protein, into the extracellular milieu and onto the surface of fungal organisms and kill the fungus in a contact-dependent manner. Eosinophils use their versatile beta(2) integrin molecule, CD11b, to adhere to a major cell wall component, beta-glucan, but eosinophils do not express other common fungal receptors, such as dectin-1 and lactosylceramide. The I-domain of CD11b is distinctively involved in the eosinophils' interaction with beta-glucan. Eosinophils do not react with another fungal cell wall component, chitin. Because human eosinophils respond to and kill certain fungal organisms, our findings identify a previously unrecognized innate immune function for eosinophils. This immune response by eosinophils may benefit the host, but, in turn, it may also play a role in the development and/or exacerbation of eosinophil-related allergic human diseases, such as asthma.  相似文献   

7.
Recently our laboratory has shown that neutrophils contain enzymatic activity within their lysosomal granules which will generate chemotactic activity for neutrophils and tumor cells from the fifth component of complement (C5). We have now expanded this initial observation and have demonstrated that eosinophils can release enzymatic activity from their lysosomal granules upon stimulation with immune complexes or opsoninized zymosan, but not with C5a or synthetic chemotactic peptides. Furthermore, the enzymatic activity released from the eosinophil lysosomal granules can cleave C5 into eosinophil-specific chemotactic activity. The generation of the eosinophil chemotactic activities from C5 is blocked by prior treatment of the eosinophil preparations with a number of protease inhibitors. The eosinophil-derived C5 cleaving activity possesses a pH optimum of 7.2, thus suggesting the enzymatic activity is a neutral protease. The demonstration that enzyme activities derived from eosinophils have the ability to generate eosinophil chemotactic factor(s) from C5 may explain why eosinophils are the predominant inflammatory cell in both nasal polyps and in the nasopharynx and bronchi of patients with allergic conditions such as hay fever and asthma.  相似文献   

8.
Eosinophils are predominantly found in tissues that have an interface with the external environment and its bacterial flora, such as the gastrointestinal and respiratory tracts. Although it is not the primary function of eosinophils to phagocytose and kill bacteria, we hypothesized that they might be able to recognize and become activated by microorganisms that enter the normally sterile tissues where they reside. The aim of this study was to evaluate whether human eosinophils get universally activated by bacteria or if they discriminate between bacteria derived from different phylogenetic groups. Eleven bacterial species representative of different taxonomic groups were examined. A hierarchy was seen among the bacterial species regarding their capacity to activate eosinophils. Furthermore, several eosinophilic activation patterns were evoked by the different bacterial species. The strongest eosinophil activator, Escherichia coli, elicited chemotaxis, degranulation and respiratory burst. Low numbers of bacteria caused the release of the granule proteins major basic protein and eosinophil peroxidase, whereas high numbers were required for the release of eosinophil cationic protein (ECP). Eosinophils did not seem to discriminate between gram-positive and gram-negative bacteria, unlike monocytes. However, the release of ECP was mainly seen after stimulation with gram-negative species. Blockade of the formyl peptide receptor partially inhibited bacterial activation of eosinophils, implicating its involvement in this activity. We propose that the presence of defined bacterial species in the normally sterile tissues inhabited by eosinophils may constitute danger signals to eosinophils. This may be of importance in the perpetuation of allergic inflammation.  相似文献   

9.
HMGB1 is an alarmin that can stimulate the innate immune system alone or in a complex with other inflammatory mediators. Given the recent interest in HMGB1 with respect to the pathogenesis of eosinophil-associated disorders, including asthmatic inflammation and chronic rhinosinusitis, we have explored the role of this mediator and in promoting eosinophil activation. HMGB1 receptors RAGE and TLR4 but not TLR2 were detected on freshly isolated human eosinophils from healthy donors. Physiologic and relevant pathophysiologic levels of biologically-active HMGB1 had no effect on survival of human eosinophils alone or in combination with pro-survival cytokines IL-5, IL-3, or GM-CSF, and increasing concentrations of HMGB1 had no impact on surface expression of RAGE, TLR2 or TLR4. Similarly, HMGB1 did not elicit chemotaxis of human eosinophils alone and had no effect in combination with the eosinophil chemotactic agent, eotaxin-2 (CCL24). However, surface expression of TLR2 and TLR4 increased in response to cell stress, notably on eosinophils that remain viable after 48 hours without IL-5. As such, HMGB1 signaling on eosinophils may be substantially more detailed, and may involve complex immunostimulatory pathways other than or in addition to those evaluated here.  相似文献   

10.
Eosinophils and their products are probably important in the pathophysiology of allergic diseases, such as bronchial asthma, and in host immunity to certain organisms. An association between environmental fungal exposure and asthma has been long recognized clinically. Although products of microorganisms (e.g., lipopolysaccharides) directly activate certain inflammatory cells (e.g., macrophages), the mechanism(s) that triggers eosinophil degranulation is unknown. In this study we investigated whether human eosinophils have an innate immune response to certain fungal organisms. We incubated human eosinophils with extracts from seven environmental airborne fungi (Alternaria alternata, Aspergillus versicolor, Bipolaris sorokiniana, Candida albicans, Cladosporium herbarum, Curvularia spicifera, and Penicillium notatum). Alternaria and Penicillium induced calcium-dependent exocytosis (e.g., eosinophil-derived neurotoxin release) in eosinophils from normal individuals. Alternaria also strongly induced other activation events in eosinophils, including increases in intracellular calcium concentration, cell surface expression of CD63 and CD11b, and production of IL-8. Other fungi did not induce eosinophil degranulation, and Alternaria did not induce neutrophil activation, suggesting specificity for fungal species and cell type. The Alternaria-induced eosinophil degranulation was pertussis toxin sensitive and desensitized by preincubating cells with G protein-coupled receptor agonists, platelet-activating factor, or FMLP. The eosinophil-stimulating activity in Alternaria extract was highly heat labile and had an M(r) of approximately 60 kDa. Thus, eosinophils, but not neutrophils, possess G protein-dependent cellular activation machinery that directly responds to an Alternaria protein product(s). This innate response by eosinophils to certain environmental fungi may be important in host defense and in the exacerbation of inflammation in asthma and allergic diseases.  相似文献   

11.
Allergic diseases such as asthma are characterized by tissue eosinophilia induced by the combined effects of chemoattractants and cytokines. Lipid mediators are a major class of endogenous chemoattractants, among which 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent for human eosinophils. In this study, we investigated the effects of 5-oxo-ETE on eosinophil survival by flow cytometry. We found that this compound could promote eosinophil survival in the presence of small numbers of contaminating monocytes, but not in their absence. The conditioned medium from monocytes treated for 24 h with 5-oxo-ETE also strongly promoted eosinophil survival, whereas the medium from vehicle-treated monocytes had no effect. An antibody against the granulocyte/macrophage colony-stimulating factor (GM-CSF) completely blocked the response of eosinophils to the conditioned medium from 5-oxo-ETE-treated monocytes, whereas an antibody against interleukin-5 had no effect. Furthermore, 5-oxo-ETE stimulated the release of GM-CSF from cultured monocytes in amounts compatible with eosinophil survival activity, with a maximal effect being observed after 24 h. This effect was concentration-dependent and could be observed at concentrations in the picomolar range. 5-Oxo-ETE and leukotriene B(4) had similar effects on GM-CSF release at low concentrations, but 5-oxo-ETE induced a much stronger response at concentrations of 10 nm or higher. This is the first report that 5-oxo-ETE can induce the release of any cytokine, suggesting that it could be an important mediator in allergic and other inflammatory diseases due both to its chemoattractant properties and to its potent effects on the synthesis of the survival factor GM-CSF.  相似文献   

12.
Type I IFNs represent a major antimicrobial defense mechanism due to their property of enhancing immune responses by priming both innate and adaptive immune cells. Plasmacytoid dendritic cells (pDC) are the major source of type I IFN in the human body and represent innate immune cells involved in first-line defense against invading pathogens. Although pDC activation has been extensively studied upon stimulation with synthetic TLR ligands, viruses, and intracellular bacteria, there is only scarce information on extracellular bacteria. In this study we show that the triggering of human pDC-derived IFN-alpha secretion by Staphylococcus aureus is independent of TLR2 and specific for coagulase-positive staphylococci. Specificity of the pDC response to S. aureus is independent of the bacterial virulence factors protein A and alpha-toxin but is mediated by Ag-specific IgG and CD32. S. aureus-induced pDC activation can be blocked by inhibitory DNA oligonucleotides and chloroquine, suggesting that engagement of TLR7/9 by bacterial nucleic acids after CD32-mediated uptake of these compounds may play a central role in this process. Altogether, we propose that in marked contrast to nonselective TLR2-dependent activation of most innate immune cells, pDC activation by S. aureus represents an Ag-specific memory response since it requires the presence of class-switched immunoglobulins.  相似文献   

13.
The bacteria inhabiting the mammalian gastrointestinal (GI) tract play a vital role in normal digestion and immune function. In a healthy host, the immune system is tolerant to gut bacteria and does not mount an effector response to bacteria-derived antigens. Loss of tolerance to intestinal microflora has been associated with inflammatory bowel disease (IBD) in both mice and humans. Mice lacking Ndfip1, an adaptor protein for E3 ubiquitin ligases of the Nedd4-family, in T cells (Ndfip1-cKO) develop a disease resembling IBD. Inflammation in these mice is characterized by increased activation of peripheral T cells, infiltration of eosinophils into the GI tract, and epithelial hypertrophy in the esophagus. We hypothesized that this intestinal inflammation in Ndfip1-cKO mice is caused by a loss of T-cell tolerance to bacterial antigens. Here, we show that treatment of Ndfip1-cKO mice with broad-spectrum antibiotics drastically reduced bacterial load in stool but had little effect on T-cell activation and did not affect eosinophil infiltration into the GI tract or epithelial hypertrophy in the esophagus. Thus, inflammation in Ndfip1-cKO mice is not caused by a loss of tolerance to intestinal microbiota. Rather, T cell activation and eosinophilia may instead be triggered by other environmental antigens.  相似文献   

14.
Protective immunity to Strongyloides stercoralis infective larvae in mice has been shown to be dependent on IL-5 based on mAb depletion studies. The goal of this study was to determine the functional role of IL-5 during the innate and adaptive immune response to larval S. stercoralis in mice. In these studies, three strains of mice were used: wild-type C57BL/6J (WT), IL-5 knockout (KO), and IL-5 transgenic (TG). Innate responses to the larvae indicated that there was enhanced survival in the KO animals and decreased survival in the TG animals compared with WT. Furthermore, killing of larvae in TG mice was associated with eosinophil infiltration and degranulation. In studying the adaptive immune response, it was observed that immunization of KO mice did not lead to the development of protective immunity. Experiments were then performed to determine whether KO mice reconstituted with Abs or cells could then develop protective immunity. KO mice displayed protective immunity via a granulocyte-dependent mechanism following injection of purified IgM from immune wild-type animals. Immunity in KO mice could also be reconstituted by the injection of eosinophils at the time of immunization. These eosinophils did not participate in actively killing the challenge infection, but rather were responsible for the induction of a protective Ab response. We conclude that IL-5 is required in the protective immune response for the production of eosinophils, and that eosinophils were involved in larval killing during innate immunity and in the induction of protective Abs in the adaptive immune response.  相似文献   

15.
Eosinophils and airway nerves in asthma   总被引:6,自引:0,他引:6  
In the lungs, neuronal M2 muscarinic receptors limit the release of acetylcholine from postganglionic cholinergic nerves. However, these receptors are not functional under certain circumstances in animal models of hyperreactivity such as occurs after exposure of sensitised animals to an allergen or during a respiratory tract virus infection. This loss of M2 receptor function leads to an increase in acetylcholine release from cholinergic nerves and thus is a mechanism for the vagally mediated hyperreactivity seen in these animals. Studies in animal models of hyperreactivity have shown that eosinophils localise to the airway nerves of sensitised animals after antigen challenge. Inhibiting this localisation of eosinophils either with an antibody to the eosinophil survival cytokine IL-5 or the eosinophil adhesion molecule VLA-4 prevents loss of M2 muscarinic receptor function. It is likely that eosinophil MBP is responsible for the loss of M2 receptor function, since inhibiting eosinophil MBP with an antibody or neutralising MBP with heparin prevents this loss of function. These data are also supported by ligand binding studies where it has been shown that eosinophil MBP is an allosteric antagonist at neuronal M2 muscarinic receptors. Loss of function of lung neuronal M2 muscarinic receptors may also occur under certain circumstances in patients with asthma, although the mechanisms are not yet established.  相似文献   

16.
There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.  相似文献   

17.
The decline in immune function with aging, known as immunosenescence, has been implicated in evolutionarily diverse species, but the underlying molecular mechanisms are not understood. During aging in Caenorhabditis elegans, intestinal tissue deterioration and the increased intestinal proliferation of bacteria are observed, but how innate immunity changes during C. elegans aging has not been defined. Here we show that C. elegans exhibits increased susceptibility to bacterial infection with age, and we establish that aging is associated with a decline in the activity of the conserved PMK-1 p38 mitogen-activated protein kinase pathway, which regulates innate immunity in C. elegans. Our data define the phenomenon of innate immunosenescence in C. elegans in terms of the age-dependent dynamics of the PMK-1 innate immune signaling pathway, and they suggest that a cycle of intestinal tissue aging, immunosenescence, and bacterial proliferation leads to death in aging C. elegans.  相似文献   

18.
19.
Eosinophils have been shown to be potent effector cells for the killing of helminth parasites in in vitro cultures. However, an in vivo role for eosinophils has been more difficult to establish. Early data showed close associations between eosinophils and damaged or dead parasites in histological sections, and significant correlations between resistance to parasites and the capacity to induce eosinophilia after infection. However, more recent studies, using mice that have reduced or increased eosinophil levels through targeting of the eosinophil-specific cytokine interleukin 5, have not unanimously supported an in vivo role for eosinophils in resistance to parasites. Here, Els Meeusen and Adam Balic review these studies and suggest a major role for the innate immune response in unnatural mouse-parasite models to explain some of the findings. They conclude that the data so far are consistent with a role for eosinophils in the killing of infective larval stages, but not adults, of most helminth parasites.  相似文献   

20.
ONZIN is a small, cysteine-rich peptide of unique structure that is conserved in all vertebrates examined to date. We show that ONZIN is expressed at high levels in epithelial cells of the intestinal tract, the lung, and in cells of the immune system including macrophages and granulocytes. Because this pattern of expression is suggestive of a role in innate immune function, we have generated mice lacking this protein and examined their ability to respond to challenge with infectious agents. Onzin(-/-) mice show a heightened innate immune response after induction of acute peritonitis with Klebsiella pneumoniae. This increased response is consistent with an increased bacterial burden in the Onzin(-/-) mice. Ex vivo studies show that, whereas phagocytosis is not altered in Onzin(-/-) neutrophils, phagocytes lacking this protein kill bacteria less effectively. This result identifies ONZIN as a novel class of intracellular protein required for optimal function of the neutrophils after uptake of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号