首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Sorex is one of the most successful genera of Eulipotyphla. Species of this genus are characterized by a striking chromosome variability including XY1Y2 sex chromosome systems and exceptional chromosomal polymorphisms within and between populations. To study chromosomal evolution of the genus in detail, we performed cross-species chromosome painting of 7 Sorex species with S. granarius and S. araneus whole-chromosome probes and found that the tundra shrew S. tundrensis has the most rearranged karyotype among these. We reconstructed robust phylogeny of the genus Sorex based on revealed conserved chromosomal segments and syntenic associations. About 16 rearrangements led to formation of 2 major Palearctic groups after their divergence from the common ancestor: the S. araneus group (10 fusions and 1 fission) and the S. minutus group (5 fusions). Further chromosomal evolution of the 12 species inside the groups, including 5 previously investigated species, was accompanied by multiple reshuffling events: 39 fusions, 20 centromere shifts and 10 fissions. The rate of chromosomal exchanges upon formation of the genus was close to the average rate for eutherians, but increased during recent (about 6-3 million years ago) speciation within Sorex. We propose that a plausible ancestral Sorex karyotype consists of 56 elements. It underwent 20 chromosome rearrangements from the boreoeutherian ancestor, with 14 chromosomes retaining the conserved state. The set of genus-specific chromosome signatures was drawn from the human (HSA)-shrew comparative map (HSA3/12/22, 8/19/3/21, 2/13, 3/18, 11/17, 12/15 and 1/12/22). The syntenic association HSA4/20, that was previously proposed as a common trait of all Eulipotyphla species, is shown here to be an apomorphic trait of S. araneus.  相似文献   

2.
An restriction fragment length polymorphism (RFLP)-based genetic map of ryegrass (Lolium) was constructed for comparative mapping with other Poaceae species using heterologous anchor probes. The genetic map contained 120 RFLP markers from cDNA clones of barley (Hordeum vulgare L.), oat (Avena sativa L.), and rice (Oryza sativa L.), covering 664 cM on seven linkage groups (LGs). The genome comparisons of ryegrass relative to the Triticeae, oat, and rice extended the syntenic relationships among the species. Seven ryegrass linkage groups were represented by 10 syntenic segments of Triticeae chromosomes, 12 syntenic segments of oat chromosomes, or 16 syntenic segments of rice chromosomes, suggesting that the ryegrass genome has a high degree of genome conservation relative to the Triticeae, oat, and rice. Furthermore, we found ten large-scale chromosomal rearrangements that characterize the ryegrass genome. In detail, a chromosomal rearrangement was observed on ryegrass LG4 relative to the Triticeae, four rearrangements on ryegrass LGs2, 4, 5, and 6 relative to oat, and five rearrangements on ryegrass LGs1, 2, 4, 5, and 7 relative to rice. Of these, seven chromosomal rearrangements are reported for the first time in this study. The extended comparative relationships reported in this study facilitate the transfer of genetic knowledge from well-studied major cereal crops to ryegrass.  相似文献   

3.
Ribonuclease inhibitor (RNH) is a protein that binds tightly to ribonucleases in cells and may be essential in the control of mRNA degradation and gene expression. The human RNH gene has been regionally localized to chromosome band 11p15 by in situ hybridization. A human placental cDNA was used to construct a 600-bp probe, which was then radiolabeled with tritium for in situ hybridization to human metaphase chromosomes. Localization of the RNH gene to 11p15, and possibly to 11p15.5, adds to a large number of genes assigned to this band, including 10 structural genes. This chromosomal region also represents an evolutionarily conserved syntenic group in the owl monkey, mouse, rat, and cow. Thus, regional assignment of RNH could facilitate the understanding of this gene and its association with ribonucleases, and perhaps extend a conserved syntenic region in mammalian genomes.  相似文献   

4.
Human and chimpanzee karyotypes differ by virtue of nine pericentric inversions that serve to distinguish human chromosomes 1, 4, 5, 9, 12, 15, 16, 17, and 18 from their chimpanzee orthologues. In this study, we have analysed the breakpoints of the pericentric inversion characteristic of chimpanzee chromosome 4, the homologue of human chromosome 5. Breakpoint-spanning BAC clones were identified from both the human and chimpanzee genomes by fluorescence in situ hybridisation, and the precise locations of the breakpoints were determined by sequence comparisons. In stark contrast to some other characterised evolutionary rearrangements in primates, this chimpanzee-specific inversion appears not to have been mediated by either gross segmental duplications or low-copy repeats, although micro-duplications were found adjacent to the breakpoints. However, alternating purine–pyrimidine (RY) tracts were detected at the breakpoints, and such sequences are known to adopt non-B DNA conformations that are capable of triggering DNA breakage and genomic rearrangements. Comparison of the breakpoint region of human chromosome 5q15 with the orthologous regions of the chicken, mouse, and rat genomes, revealed similar but non-identical syntenic disruptions in all three species. The clustering of evolutionary breakpoints within this chromosomal region, together with the presence of multiple pathological breakpoints in the vicinity of both 5p15 and 5q15, is consistent with the non-random model of chromosomal evolution and suggests that these regions may well possess intrinsic features that have served to mediate a variety of genomic rearrangements, including the pericentric inversion in chimpanzee chromosome 4.  相似文献   

5.
This work presents chromosome homology maps between Mus musculus (MMU) and 2 South American rodent species from the Cricetidae group: Necromys lasiurus (NLA, 2n = 34) and Thaptomys nigrita (TNI, 2n = 52), established by ZOO-FISH using mouse chromosome-specific painting probes. Extending previous molecular cytogenetic studies in Neotropical rodents, the purpose of this work was to delineate evolutionary chromosomal rearrangements in Cricetidae rodents and to reconstruct the phylogenetic relationships among the Akodontini species. Our phylogenetic reconstruction by maximum parsimony analysis of chromosomal characters confirmed one consistent clade of all Neotropical rodents studied so far. In both species analyzed here, we observed the syntenic association of chromosome segments homologous to MMU 8/13, suggesting that this chromosome form is a synapomorphic trait exclusive to Neotropical rodents. Further, the previously described Akodontini-specific syntenic associations MMU 3/18 and MMU 6/12 were observed in N.lasiurus but not in T. nigrita, although the latter species is considered a member of the Akodontini tribe by some authors. Finally, and in agreement with this finding, N.lasiurus and Akodon serrensis share the derived fission of MMU 13, which places them as basal sister clades within Akodontini.  相似文献   

6.
Human chromosome 7 has a complex syntenic origin. It was divided into two segments in both the ancestral primate karyotype and in Platyrrhini. Apparently, a small segment in the ancestral platyrrhine karyotype was associated with HSA5 and the remainder formed a middle‐sized submetacentric. We tested the dynamics of platyrrhine chromosomes by hybridizing the locus specific Willams‐Beuren probe (7q 11.23, 450 kb) to chromosomes of representative species from the three families of the New World monkeys recently proposed by molecular genomics: Cebidae, Callithrix argentata (bare ear marmoset or silvery marmoset, 2n = 44); Pitheciidae, Callicebus cupreus [red titi monkey, or coppery monkey, 2n = 46)] and Atelidae, Alouatta caraya (black and gold howler, 2n = 52). In both the marmoset and the howler monkeys, the signal was found on the small segment of chromosome 7 associated with human chromosome 5, but not in Callicebus cupreus. Instead, the Williams‐Beuren syndrome (WS) signal was found on a C. cupreus chromosome previously reported to be hybridized only by human chromosome 1. The WS probe indicates a small, but complex translocation never described before. Our results point out that fluorescence in situ hybridization (FISH) with locus specific probes and cloned DNA fragments such as bacterial aftificial chromosomes (BACs) provides higher resolution than FISH with whole chromosomes paints. It may be well that the variability seen in the hybridization patterns and revealed by the WS FISH in this report is as a result of a rearrangement ‘hot spot’. The WS region in humans is composed of region‐specific different blocks of complex segmental duplications that probably promote the extraordinary rate of evolutionary dynamics of this region among primate species, and which continues to be reflected today by the predisposition of this region to disease syndromes such as WS. The evolutionary history of this region also suggests that repeat families in this region had their origin in a common ancestor of both Old World and New World monkeys.  相似文献   

7.
The Platyrrhini are one of the most karyologically derived groups of primates and the evolution of their karyotypes is far from understood. The identification of the origin and direction of chromosome rearrangements will contribute to a better understanding of New World monkey phylogeny, taxonomy, and evolution. We mapped homology and identified translocations in the chromosomes of the dusky titi monkey (Callicebus moloch, 2n = 50) and the squirrel monkey (Saimiri sciureus, 2n = 44) by fluorescence in situ hybridization (FISH) of human chromosome paints. The hybridization results established chromosomal homologies between these New World primates, humans, other primates, and more distantly related mammalian species and show that both species have highly rearranged karyotypes. The total number of hybridization signals was 37 in C. moloch and 40 in S. sciureus, which is in the range of most comparisons of human chromosomes with phylogenetically more distant species outside of the primate order. Parsimony analyses of outgroup painting patterns allowed us to propose an ancestral karyotype for New World monkeys consisting of 2n = 56 with homologs to the following human chromosomes or chromosome segments: 1b; 1c; 2a; 2b; 3a; 3b; 3/21; 4; 5; 6; 7; 8a; 8/18; 9; 10a; 10/16; 11; 12; 13; 14/15; 15a; 16a; 17; 19; 20; 22; X; Y. Associations 8/18 and 10/16 are derived ancestral associations for all Platyrrhini. A 2/16 association found in S. sciureus and C. moloch was also seen in Ateles geoffroyi and Cebus capucinus; a 5/7 association in S. sciureus was present in A. geoffroyi, C. capucinus, and Alouatta belzebul. Other associations seen in the dusky titi monkey or the squirrel monkey are probably automorphisms. Comparison with chromosome phylogenies based on R-banding [Dutrillaux et al., 1986] showed that there were many errors in assigning homology with human chromosomes. The chromosomal phylogeny of New World monkeys based on banding patterns is in need of revision using modern molecular methods.  相似文献   

8.
Summary The frequency of spontaneous 6-thioguanine (TG)-resistant peripheral blood lymphocytes in five unrelated Werner syndrome (WS) patients was determined using an autoradiographic labeling assay. The average frequency of TG-resistant lymphocytes was eightfold higher in WS patients than in sex- and age-matched normal control donors. This finding and previous identification of increased spontaneous chromosomal rearrangements and deletions in WS cells or cell lines suggest that WS is a human genomic instability or mutator syndrome.  相似文献   

9.
In contrast to mammals, birds exhibit a slow rate of chromosomal evolution. It is not clear whether high chromosome conservation is an evolutionary novelty of birds or was inherited from an earlier avian ancestor. The evolutionary conservatism of macrochromosomes between birds and turtles supports the latter possibility; however, the rate of chromosomal evolution is largely unknown in other sauropsids. In squamates, we previously reported strong conservatism of the chromosomes syntenic with the avian Z, which could reflect a peculiarity of this part of the genome. The chromosome 1 of iguanians and snakes is largely syntenic with chromosomes 3, 5 and 7 of the avian ancestral karyotype. In this project, we used comparative chromosome painting to determine how widely this synteny is conserved across nine families covering most of the main lineages of Squamata. The results suggest that the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to at least the early Jurassic and could be an ancestral characteristic for Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and Scinciformata). In Squamata chromosome conservatism therefore also holds for the parts of the genome which are homologous to bird autosomes, and following on from this, a slow rate of chromosomal evolution could be a common characteristic of all sauropsids. The large evolutionary stasis in chromosome organization in birds therefore seems to be inherited from their ancestors, and it is particularly striking in comparison with mammals, probably the only major tetrapod lineage with an increased rate of chromosomal rearrangements as a whole.  相似文献   

10.
Chromosome rearrangements are considered as "rare genomic changes" and can provide useful markers and even landmarks for reconstructing phylogenies complementary to DNA sequence data and bio-morphological comparisons. Here, we applied multi-directional chromosome painting to reconstruct the chromosome phylogeny and evolutionary relationships among the New World monkey (Platyrrhini) species Callithrix argentata, Cebuella pygmaea, Saguinus oedipus, Callithrix jacchus and Callimico goeldii. The results clarified several aspects of New Wold monkey phylogeny. In particular the phylogenetic position of C. goeldii was elucidated, which has been controversially discussed and variously classified in the family Callitrichidae, in the family Cebidae or in its own family Callimiconidae. Comparative genome maps were established by multi-color fluorescence in situ hybridization (FISH) with human, S. oedipus and Lagothrix lagothricha chromosome- specific DNA probes. From these data we reconstructed the putative ancestral karyotype of all Callitrichidae. Various derived chromosomal syntenies are shared by all five species and cytogenetically define Callitrichidae - including Callimico goeldii -- as a distinctive group within the Platyrrhini. C. pygmaea and C. argentata share identical chromosomal syntenies from which S. oedipus and C. jacchus differ by single independent translocations. A common derived chromosomal change links Callimico with the marmosets to the exclusion of the tamarins, however, it has further diverged from an ancestral marmoset karyotype by at least four apomorphic rearrangements. Saimiri sciureus, representing the Cebinae, exclusively shares a derived syntenic association with all Callithrichidae, defining the genus Saimiri as a sister group.  相似文献   

11.
The central region of mouse Chromosome (Chr) 8, containing the myodystrophy (myd) locus, is syntenic with human Chr 4q28-qter. The human neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) maps to Chr 4q35, and myd has been proposed as a mouse homolog of FSHD. We have employed a comparative mapping approach to investigate this relationship further by extending the mouse genetic map of this region. We have ordered 12 genes in a single cross, 8 of which have human homologs on 4q28-qter. The results confirm a general relationship between the most distal genes on human 4q and the most proximal genes in the mouse 8 syntenic region. Despite chromosomal rearrangements of syntenic groups in this region, conservation of gene order is maintained between the group of genes in the human telomeric region of 4q35 and MMU8. Furthermore, this conserved telomeric HSA4q35 syntenic group maps proximal to the myd mutation and is flanked by genes with homologs on HSA8p22. At the proximal boundary of the MMU8 linkage group we have identified a single 300-kb YAC containing the genes Frgl and Pcml, which have human homologs on 4q35 and 8p22, respectively. Thus, this YAC spans an evolutionary chromosomal breakpoint. As well as providing clues about chromosomal evolution, this map of the FSHD syntenic mouse region should prove invaluable in the isolation of candidate genes for this disease. Received: 20 January 1998 / Accepted: 10 April 1998  相似文献   

12.
13.
The homeobox 2 (HOX2) and homeobox 3 (HOX3) clusters have been chromosomally assigned in cattle by in situ hybridization. The probes employed were a murine probe for the mapping of HOX2 to 19q17-qter and human probes for the mapping of HOX3 to 5q14-q23. These assignments confirm the chromosomal assignment of two syntenic groups, consisting of loci located on human chromosome 12 (bovine chromosome 5) and the long arm of human chromosome 17 (bovine chromosome 19).  相似文献   

14.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.  相似文献   

15.
In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.  相似文献   

16.
Parrots (order: Psittaciformes) are the most common captive birds and have attracted human fascination since ancient times because of their remarkable intelligence and ability to imitate human speech. However, their genome organization, evolution and genomic relation with other birds are poorly understood. Chromosome painting with DNA probes derived from the flow-sorted macrochromosomes (1-10) of chicken (Gallus gallus, GGA) has been used to identify and distinguish the homoeologous chromosomal segments in three species of parrots, i.e., Agapornis roseicollis (peach-faced lovebird); Nymphicus hollandicus (cockatiel) and Melopsittacus undulatus (budgerigar). The ten GGA macrochromosome paints unequivocally recognize 14 to 16 hybridizing regions delineating the conserved chromosomal segments for the respective chicken macrochromosomes in these representative parrot species. The cross-species chromosome painting results show that, unlike in many other avian karyotypes with high homology to chicken chromosomes, dramatic rearrangements of the macrochromosomes have occurred in parrot lineages. Among the larger GGA macrochromosomes (1-5), chromosomes 1 and 4 are conserved on two chromosomes in all three species. However, the hybridization pattern for GGA 4 in A. roseicollis and M. undulatus is in sharp contrast to the most common pattern known from hybridization of chicken macrochromosome 4 in other avian karyotypes. With the exception of A. roseicollis, chicken chromosomes 2, 3 and 5 hybridized either completely or partially to a single chromosome. In contrast, the smaller GGA macrochromosomes 6, 7 and 8 displayed a complex hybridization pattern: two or three of these macrochromosomes were found to be contiguously arranged on a single chromosome in all three parrot species. Overall, the study shows that translocations and fusions in conjunction with intragenomic rearrangements have played a major role in the karyotype evolution of parrots. Our inter-species chromosome painting results unequivocally illustrate the dynamic reshuffling of ancestral chromosomes among the karyotypes of Psittaciformes.  相似文献   

17.
Common fragile sites (cFSs) are non-random chromosomal regions that are prone to breakage under conditions of replication stress. DNA damage and chromosomal alterations at cFSs appear to be critical events in the development of various human diseases, especially carcinogenesis. Despite the growing interest in understanding the nature of cFS instability, only a few cFSs have been molecularly characterised. In this study, we fine-mapped the location of FRA2H using six-colour fluorescence in situ hybridisation and showed that it is one of the most active cFSs in the human genome. FRA2H encompasses approximately 530 kb of a gene-poor region containing a novel large intergenic non-coding RNA gene (AC097500.2). Using custom-designed array comparative genomic hybridisation, we detected gross and submicroscopic chromosomal rearrangements involving FRA2H in a panel of 54 neuroblastoma, colon and breast cancer cell lines. The genomic alterations frequently involved different classes of long terminal repeats and long interspersed nuclear elements. An analysis of breakpoint junction sequence motifs predominantly revealed signatures of microhomology-mediated non-homologous recombination events. Our data provide insight into the molecular structure of cFSs and sequence motifs affected by their activation in cancer. Identifying cFS sequences will accelerate the search for DNA biomarkers and targets for individualised therapies.  相似文献   

18.
We mapped chromosomal homologies in two species of Chiropotes (Pitheciini, Saki Monkeys) and one species of Aotus (Aotinae, Owl Monkey) by multi-directional chromosome painting. Human chromosome probes were hybridized to Chiropotes utahicki, C. israelita and Aotus nancymae metaphases. Wooly Monkey chromosome paints were also hybridized to Owl Monkey metaphases. We established Owl Monkey chromosome paint probes by flow sorting and reciprocally hybridized them to human chromosomes. The karyotypes of the Bearded Saki Monkeys studied here are close to the hypothesized ancestral platyrrhine karytoype, while that of the Owl Monkey appears to be highly derived. The A. nancymae karyotype is highly shuffled and only three human syntenic groups were found conserved coexisting with 17 derived human homologous associations. A minimum of 14 fissions and 13 fusions would be required to derive the A. nancymae karyotype from that of the ancestral New World primate karyotype. An inversion between homologs to segments of human 10 and 16 suggests a link between Callicebus and Chiropotes, while the syntenic association of 10/11 found in Aotus and Callicebus suggests a link between these two genera. Future molecular cytogenetic work will be needed to determine whether these rearrangements represent synapomorphic chromosomal traits.  相似文献   

19.
The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.  相似文献   

20.
Summary It has been suggested that fragile sites on human chromosomes predispose to specific rearrangements seen in cancer. Renal cell carcinoma is characterised by recurrent aberrations of chromosome 3p and frequent rearrangements of chromosome 5q. To investigate whether there might be an association between fragile sites and recurrent breakpoints in renal cell carcinoma, we have determined the breakpoints observed in 50 tumours and compared them to the known fragile sites on chromosomes 3 and 5. No correlation between fragile sites and cancer-related breakpoints in renal cell carcinomas was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号