首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H+-K+-exchange via the Trk-like system of K+ accumulation takes place in anaerobically grown S. typhimurium LT-2 with stable ratio of DCC-sensitive ionic fluxes, equal to 2H+ of a cell for one K+ of the medium. This exchange is now observed in the mutant S. typhimurium TH-31 with unfunctional H+-ATPase. H+-K+-exchange in aerobically grown S. typhimurium LT-2 has unstable ratio of ionic fluxes. The rate of K+ uptake in anaerobically grown bacteria is higher than that in the aerobically grown ones. Q10 is about 1.8 both for H+ transfer and K+ uptake in anaerobically grown bacteria, but it is 1.7 and 0.9 respectively in the aerobically grown ones. Delta psi is not changed by different temperatures both in anaerobically and aerobically grown bacteria. The distribution of K+ in anaerobically grown bacteria is higher than 10(3) and the potassium equilibrium potential is much higher than the measured delta psi. In aerobically grown bacteria the distribution of K+ is in good conformity with the measured delta psi. H+ and K+ transport in anaerobically grown cells is likely to proceed by the same mechanism, which includes H+-ATPase and the Trk-like system. In aerobically grown bacteria these transport systems work separately, and the Trk-like system as K+-ionophore serving for K+ uptake across the electrical field on the membrane.  相似文献   

2.
Transport of K+ and H+ in the anaeronically and aerobically grown bacterium Serratia marcescens has been studied. The volumes of one cell of the anaerobically and aerobically grown bacterium were 3.7 X 10(-13) cm3 and 2.4 X 10(-13) cm3, respectively. Irrespective of the growth conditions the bacteria manifested the same respiration rate. However, the values of membrane potential for the anaerobically and aerobically grown bacterium were different and equal to -130 mV and -175 mV (interior negative), respectively, in the absence of an exogenic energy source. KCN + DCCD decreases delta psi down to almost zero in both species. DCCD alone decreases delta psi partially in anaerobes and increases delta psi in aerobes, whereas KCN alone reduces delta psi partially in both species. The introduction of glucose into the medium containing K+ reduces the absolute value of delta psi to [-160] mV in aerobes and to [-20] mV in anaerobes. The effect is not observed without external K+. In the presence of arsenate a delta psi is not reduced after the addition of glucose. At pH 7.5-7.8 the ATP level in aerobes grows notably faster than in anaerobes. The H+ extrusion becomes intensified when K+ uptake is activated by the increase in external osmotic pressure. Apparent Km and Vmax for K+ accumulation are 1.2 mM and 0.4 mM.min-1.g-1. The decrease of delta psi by glucose or KCN + DCCD have no effect on the K+ uptake whereas CCCP inhibits potassium accumulation. At the same time, arsenate stabilizes the delta psi value, but blocks K+ uptake. The accumulation of K+ correlates with the potassium equilibrium potential of -200 mV calculated according to the Nernst equation, whereas the delta psi measured was not more than [-25] mV. The calculated H+/ATP stoichiometry was 3.3 for aerobes. It was assumed that a constitutive K+ pump having a K+/ATP ratio equal to 2 or 3 operates in S. marcescens membranes.  相似文献   

3.
Anaerobically grown E. coli escape H2 into the medium during the operation of H(+)-K(+)-pump exchanging 2H+ from a cell for one K+ of the medium. Anaerobic cells grown in the nitrate medium as well as the aerobically grown bacteria possessed neither 2H+/K+ exchange system, nor the ability for H2 production. Introduction of N,N'-dicyclohexylcarbodiimide into the medium, the removal of external K+ or the decrease of external osmotic pressure blocked both the functioning of H(+)-K(+)-pump and H2 production. The substitution of glucose by lactate reduced the activity of bacteria without change in pump operation and H2 production. It is assumed that formate-hydrogen lease and H(+)-K(+)-pump are working in collaboration.  相似文献   

4.
Tre character of K+ uptake in anaerobically grown S. typhimurium LT-2 is studied. In the alkaline media with glucose and moderate K+ activity these bacteria uptake K+ in two steps, the first of which has a high rate of K+ uptake, Km 2.1 mM and Vmax 0.44 mM/g. min and is sensitive to the medium osmolarity. Bacteria transfer from the media with high osmolarity to that with low one leads to a decrease of K+ uptake at the first step. The second increase of the medium osmolarity turns on the rapid K+ uptake only at alkaline pH. K+ uptake at the first step is inhibited by DCC and protonophores. In the absence of phosphate in the medium arsenate blocks K+ uptake at the first step, and when phosphate is available arsenate decreases K+ uptake. Valinomycin decreases the rate of K+ uptake. K+ uptake at the first step in S. typhimurium proceeds via Trk-like system which requires for K+ uptake both ATP and delta mu H+.  相似文献   

5.
In previous studies, respiring Bradyrhizobium sp. strain 32H1 cells grown under 0.2% O2, conditions that derepress N2 fixation, were found to have a low proton motive force of less than -121 mV, because of a low membrane potential (delta psi). In contrast, cells grown under 21% O2, which do not fix N2, had high proton motive force values of -175 mV or more, which are typical of respiring bacteria, because of high delta psi values. In the present study, we found that a delta psi of 0 mV in respiring cells requires growth in relatively high-[K+] media (8 mM), low O2 tension, and high internal [K+]. When low-[O2], high-[K+]-grown cells were partially depleted of K+, the delta psi was high. When cells were grown under 21% O2 or in media low in K+ (50 microM K+), the delta psi was again high. The transmembrane pH gradient was affected only slightly by varying the growth or assay conditions. In addition, low-[O2], high-[K+]-grown cells had a greater proton permeability than did high-[O2]-grown cells. To explain these findings, we postulate that cells grown under conditions that derepress N2 fixation contain an electrogenic K+/H+ antiporter that is responsible for the dissipation of the delta psi. The consequence of this alteration in K+ cycling is rerouting of proton circuits so that the putative antiporter becomes the major pathway for H+ influx, rather than the H+-ATP synthase.  相似文献   

6.
Bacteriophages P22 and dp8 cause the membrane potential depolarization for 10-30 mV, reversal rapid H+ influx into bacteria and K+ exit from S. typhimurium LT2, these effects depend on infection plural and are observed only in the presence of Ca+2 in the medium. delta psi depolarization and K+ efflux induced by phage dp8 are increased with the growth of Mg+2 concentration from 0 to 2 mM. Changes of delta pH and also Na+,Ca+2 concentrations are not observed. In the presence of glucose phage infection leads to changes in H(+)-K(+)-exchange. The phages P22 and dp8 adsorption on bacteria causes changes in the form or turn of the channels in S. typhimurium membrane.  相似文献   

7.
Grampositive bacteria S. faecalis are capable of uptaking potassium ions during many hours in the media containing glucose. Such behaviour of K+-uptake indicates that this system is not regulated as it takes place in gramnegative bacteria E. coli (1,3). The stoichimetry of DCCD-sensitive exchange between H+ and K+ ions equals 2:1. It is possible that S. faecalis possesses an electrogenic proton-potassium pump which can exchange 2H+ from the cell for external K+.  相似文献   

8.
In a previous work (Trchounian et al., Biol. Membrany 16:416-428 (1999) (in Russian)) we reported the interrelations between production of H2 and H+-K+ exchange in fermenting Escherichia coli grown under anaerobic conditions at pH 7.5. The ion fluxes had stable stoichiometry 2H+/K+ and were N,N'-dicyclohexylcarbodiimide (DCC)-inhibitable at different external pH and K+ activity. In the present study, the H2 production was further studied in fermenting bacteria grown at pH 7.5 or 6.5. The H2 production was inhibited by DCC and did not occur if bacteria were grown at pH 7.5 in a medium containing formate or upon hypoosmotic stress. The H2 production was not sensitive to osmotic stress when bacteria were grown at pH 6.5. Formation of H2 and 2H+/K+ exchange were not observed in mutants with deletions of the hyfoperon genes, encoding membrane-associated hydrogenase 4. K+ influx in these mutants was not sensitive to valinomycin, in contrast to the K+ influx in the parental strain. If grown at pH 6.5, the mutants produced H2 and carried out 2H+/K+ exchange, when subjected to the hyperosmotic stress. The results suggest a participation of hydrogenase 4 in the production of H2 and proton-potassium exchange in fermenting E. coli grown at pH 7.5. In bacteria grown at pH 6.5 or in a medium containing formate, another membrane-bound hydrogenase, namely hydrogenase 3, may be responsible for the H2 production.  相似文献   

9.
The hypothesis that Na+ and K+ gradients have an energy storing function [V. P. Skulachev (1978) FEBS Lett. 87, 171-176] has been tested in experiments with Escherichia coli, the marine bacterium Vibrio harveyi, an extremely halophilic Halobacterium halobium and a fresh-water cyanobacterium Phormidium uncinatum from Lake Baikal living at an extremely low salt concentration. The capability of these microorganisms to maintain delta microH was compared using motility as a delta microH-supported function. It was found that in all cases the gradient of monovalent cations is competent to prolong the period of active motility after other energy sources are exhausted. Maximal prolongation was found in H. halobium, which in a Na+ medium was still motile when light was switched off for 9 h under anaerobic conditions. In V. harveyi the motility was maintained for 1 h, in E. coli for about 10 min and in Ph. uncinatum for about 2 min. Thus the delta microH buffer capacity of the monovalent cation gradient is proportional to the content of these cations in the habitat. It was also found that in Ph. uncinatum only delta pK is effective, whereas in E. coli and V. harveyi both delta pK and delta pNa are. In E. coli when the K+ release is completed and the cells become motionless, motility can be temporarily restored by adding NaCl which initiates an H+ efflux. Under conditions of exhaustion of energy sources, the Na+ and K+ gradient was shown to stabilize potential in H. halobium cells, measured with a tetraphenylphosphonium probe. In H. halobium and E. coli, the anaerobic ATP level was found to stabilize when the Na+ and K+ gradients were present. Addition of N,N'-dicyclohexylcarbodiimide destabilized this level, which indicated that Na+ and K+ gradients could support de novo ATP synthesis. It is concluded that the data obtained are in agreement with the concept of the energy storing by the Na+ and K+ gradients. Other functions of these gradients and the mechanisms of their formation are discussed.  相似文献   

10.
The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of delta pH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, delta psi. Maximal rate of K+ efflux is observed at 180-190 mV, whereas K+ efflux is inhibited below 140-150 mV. (2) Activation of H+-K+ exchange leads to depression of delta pH but not of delta psi. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the delta psi control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial 'uncoupling' from the delta psi control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high delta psi. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane.  相似文献   

11.
Double-stranded DNA bacteriophage PRD1 infects a variety of gram-negative bacteria harboring an IncP-type conjugative plasmid. The plasmid codes for the DNA transfer phage receptor complex in the cell envelope. Our goal was, by using a collection of mutant phage particles for which the variables are the DNA content and/or the presence of the receptor-binding protein, to obtain information on the energy requirements for DNA entry as well as on alterations in the cellular energetics taking place during the first stages of infection. We studied the fluxes of tetraphenylphosphonium (TPP+), phenyldicarbaundecaborane (PCB-), and K+ ions as well as ATP through the envelope of Salmonella typhimurium cells. The final level of the membrane voltage (delta psi) indicator TPP+ accumulated by the infected cells exceeds the initial level before the infection. Besides the effects on TPP+ accumulation, PRD1 induces the leakage of ATP and K+ from the cytosol. All these events were induced only by DNA-containing infectious particles and were cellular ATP and delta psi dependent. PRD1-caused changes in delta psi and in PCB- binding differ considerably from those observed in other bacteriophage infections studied. These results are in accordance with the presence of a specific channel engaged in phage PRD1 DNA transport.  相似文献   

12.
We have studied some features of K+ accumulation by glycolysing Mycoplasma mycoides var. Capri cells. We report that when Na+ is absent from the external medium, K+ accumulates up to the level predicted by the amplitude of the transmembrane electrical potential, delta psi m, measured by Rb+ and methyltriphenylphosphonium cation (TPMP+) distribution. Therefore, under these experimental conditions, the coupling mechanism of K+ uptake consists of a delta psi m-driven uniport. More important, when Na+ is present in the external medium, the level of K+ accumulation by glycolysing Mycoplasma cells is far too steep to be equilibrium with delta psi m (-120 mV for delta muK+ compared with -90mV for delta muRb+ or delta muTPMP+). Our results clearly indicate the presence in Mycoplasma of an active K+-transport system specifically stimulated by Na+. Furthermore, by controlling the amplitude of the energy-dependent delta muH+, we obtain strong evidence that this specific Na+-stimulated K+ transport is modulated by the transmembrane electrical potential. Finally, we show that ATP is consumed when such a transport system is in activity.  相似文献   

13.
Oxygen taxis and proton motive force in Salmonella typhimurium   总被引:16,自引:0,他引:16  
The aerotactic response of Salmonella typhimurium SL3730 has been quantitatively correlated with a change in the proton motive force (delta p) as measured by a flow-dialysis technique. At pH 7.5, the membrane potential (delta psi) in S. typhimurium changed from -162 +/- 13 to -111 +/- 15 mV when cells grown aerobically were made anaerobic, and it returned to the original value when the cells were returned to aerobiosis. The delta pH across the membrane was zero. At pH 5.5, delta psi was -70 mV in aerobiosis and -20 mV in anaerobiosis, and delta pH was -118 and -56 mV for aerobic and anaerobic cells, respectively. A decrease in delta p resulted in increased tumbling, and an increase in delta p resulted in a smooth swimming response at either pH. Inhibition of aerotaxis at pH 7.5 by various concentrations of KCN correlated with a decreased delta p, due to a decreased delta psi in aerobiosis and little change in delta psi in anaerobiosis. At concentrations up to 100 mM, 2,4-dinitrophenol decreased delta psi, but did not inhibit aerotaxis because the difference between delta psi in aerobic and anaerobic cells remained constant. Considered as a whole, the results indicate that aerotaxis in S. typhimurium is mediated by delta p.  相似文献   

14.
Citrate transport in Klebsiella pneumoniae   总被引:5,自引:0,他引:5  
Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler [4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.  相似文献   

15.
The magnitude of transmembrane potential delta psi in cells of Escherichia coli K12 was determined by the method of flow cytofluorometry for different phases of growth. It was large in the log phase, whereas in the lag and stationary phases, the population was shown to consist of two subpopulations with low and large values of delta psi in cells. In the presence of 2,4,6-trinitrotoluene (TNT), this bimodal distribution of delta psi over the population was observed during the entire growth period until TNT was almost completely eliminated from the cultivation medium (to a concentration of 18-20 mg/l). The mean value of delta psi in cells of the population grown in the presence of TNT was substantially smaller than that in controls due to the larger size of the subpopulation with a low value of delta psi. Upon elimination of TNT, the distribution of delta psi in cells of the culture became unimodal and close to that in the control culture in the early log phase of growth. These findings are discussed from the standpoint that considers heterogeneity of the culture of Escherichia coli K12 as a mechanism of its adaptation to the presence of xenobiotics.  相似文献   

16.
The addition of 5 . 10(-5) M or less of dicyclohexylcarbodiimide to Mycoplasma mycoides var. Capri preferentially influences K+ influx rather than efflux and reduces by 30--40% the activity of the membrane-bound Mg2+- ATPase. Adding valinomycin to metabolizing cells does not markedly affect K+ distribution but induces a rapid and complete loss of intracellular K+ in non-metabolizing cells. Uncoupling agents such as dinitrophenol, carbonylcyanide p-trifluoromethoxyphenylhydrazone, dissipate the K+ concentration gradient only when combined with valinomycin. Variations in the merocyanine fluorescence intensity indicate that a transmembrane electrical potential (delta psi) is generated on cell energization. This delta psi, not affected by valinomycin or uncouplers when used alone, is collapsed by a mixture of both. No change in fluorescence intensity can be detected when glucose is added to dicyclohexylcarbodiimide treated organisms. These experiments suggest that the membrane-bound Mg-ATPase activity control K+ distribution in these organisms through the generation of a transmembrane electrical potential difference.  相似文献   

17.
The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The major role of the inducers apparently consisted of the stabilization of the Ca2+-activated K+ channels, suggesting that a properly modulated delta psi p depolarization through these channels is primarily involved in the signal generation for MEL cell commitment to differentiation.  相似文献   

18.
The role of K+ and Na+ in the maintenance of the proton motive force (delta p) was studied in Escherichia coli incubated in alkaline media. Cells respiring in Tris buffer (pH 7.8) that contained less than 100 microEq of K+ and Na+ per liter had a normal delta p of about -165 mV. At pH 8.2, however, the delta p was reduced significantly. The decrease in delta p at pH 8.2 was due to a marked decrease in the transmembrane potential (delta psi), while the internal pH remained at 7.5 to 7.7. When KCl or NaCl, but not LiCl or choline chloride, was added to the cells, the delta psi rose to the values seen at an external pH of 7.8. In addition, choline chloride inhibited the enhancement of delta psi by K+. None of the salts had a significant effect on the internal pH. The effects can be attributed to alterations of K+ or Na+ cycling in and out of the cells via the known K+ and Na+ transport systems.  相似文献   

19.
ATPase activity sensitive to N,N'-dicyclohexylcarbodiimide and dependent on K+ content in medium is observed only in anaerobically grown Escherichia coli and as the analysis of mutants with defects in different subunits of (F0F1) H+-ATPase and in potassium transport shows only under the structural integrity of both F0F1 and K+-ionophore (the Trk system). The obtained results confirm the data on the H+/K+-exchange and indicate that the F0F1 and Trk systems in anaerobically grown bacteria unite into the same membrane supercomplex inside which the direct energy transfer occurs without a mediation of delta-mu H+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号