首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Amphipods are brooding peracaridan crustaceans whose young undergo direct development, with no independent larval dispersal stage. Most species are epibenthic, benthic, or subterranean. There are some 1,870 amphipod species and subspecies recognized from fresh or inland waters worldwide at the end of 2005. This accounts for 20% of the total known amphipod diversity. The actual diversity may still be several-fold. Amphipods are most abundant in cool and temperate environments; they are particularly diversified in subterranean environments and in running waters (fragmented habitats), and in temperate ancient lakes, but are notably rare in the tropics. Of the described freshwater taxa 70% are Palearctic, 13% Nearctic, 7% Neotropical, 6% Australasian and 3% Afrotropical. Approximately 45% of the taxa are subterranean; subterranean diversity is highest in the karst landscapes of Central and Southern Europe (e.g., Niphargidae), North America (Crangonyctidae), and Australia (Paramelitidae). The majority of Palearctic epigean amphipods are in the superfamily Gammaroidea, whereas talitroid amphipods (Hyalella) account for all Neotropic and much of the Nearctic epigean fauna. Major concentrations of endemic species diversity occur in Southern Europe, Lake Baikal, the Ponto-Caspian basin, Southern Australia (including Tasmania), and the south-eastern USA. Endemic family diversity is similarly centered in the Western Palearctic and Lake Baikal. Freshwater amphipods are greatly polyphyletic, continental invasions have taken place repeatedly in different time frames and regions of the world. In the recent decades, human mediated invasions of Ponto-Caspian amphipods have had great impacts on European fluvial ecosystems. Guest editors: E. V. Balian, C. Lévêque, H. Segers and K. Martens Freshwater Animal Diversity Assessment  相似文献   

2.
The history of the Quaternary genus Didacna, which is endemic to the Ponto-Caspian Sea, is discussed. Quaternary stratigraphy of this region and Didacna assemblages recorded in the Neopleistocene sequence are characterized. The development of this genus against the background of the Ponto-Caspian history is reconstructed; the replacement of species and associations of Didacna, the character of speciation, and examples of homeomorphism are discussed. Seventy-seven species of this genus, which appeared over slightly more than 600 thousand years, are described; this indicates an extremely intense speciation in Pleistocene brackish-water basins, which were inhabited by only five bivalve genera belonging to two families.  相似文献   

3.
Marine mites (Halacaroidea: Acari): a geographical and ecological survey   总被引:2,自引:2,他引:0  
Halacarid mites (Acari), with almost 700 species described, inhabit marine and freshwater habitats. The majority of genera are recorded from at least two ocean basins or continents. There is no evidence of endemic genera, in either littoral faunal provinces or in deep-sea regions. Copidognathus, a genus comprising 1/4 of all species described, is found in almost all geographic regions, depths and habitats. Other genera dominate or are restricted to cold waters, to warm waters or to distinct habitats.Corresponding habitats on either side of the boreal Atlantic Ocean harbour congeneric, identical, sibling or morphologically similar species. The fauna in the western Atlantic is less diverse than that in the eastern. Amphiatlantics are restricted to certain genera. Transatlantic distribution is independent of the niche inhabited.Of the marine halacarid species recorded from the boreal western Atlantic, 41% are amphiatlantics, while only one species is recorded from both the Caribbean and the Mediterranean. The Caribbean and the Mediterranean faunas are dominated by genera in which amphiatlantics are unknown.Most of the Black Sea species of the genus Halacarellus also occur in the Baltic, North Sea or North Atlantic, whereas the Copidognathus fauna of the Black Sea is similar to that of the Mediterranean.Halacarids are thought to be an ancient taxon, with most genera probably having been present since the Mesozoic and with several species having an age of at least 50 million years. Evidence for their antiquity is found in the distributional pattern of marine and limnic genera and species, in the lack of endemic genera despite low fecundity and lack of dispersal stages, and in the fact that amphiatlantics are restricted to certain genera without relationships to the niches inhabited.  相似文献   

4.
Gammarids from the Caspian complex have invaded many European waters along the rivers and canals of the inland migration corridors. The species examined in this work are well known as invaders of European freshwater environments, so the colonization of brackish habitats is a phenomenon inviting more detailed investigation. The aim of this study was to determine the condition of the Ponto-Caspian gammarids Pontogammarus robustoides (G.O. Sars, 1894), Obesogammarus crassus (G.O. Sars, 1894), Dikerogammarus haemobaphes (Eichwald, 1841) and Dikerogammarus villosus (Sowinsky, 1894) as expressed by the relationship between total length and the wet weight of specimens in the brackish waters of the Gulf of Gdansk (Poland). The relationships can be regarded as responses to a newly expanded habitat after they overcome the salinity barrier of the southern Baltic Sea coastal waters. All these Ponto-Caspian gammarids demonstrated an increase in weight with increasing total length: P. robustoides (b = 2.852), O. crassus (b = 3.3477), D. haemobaphes (b = 3.7855) and D. villosus (b = 2.6917). The results are an indicator of the relatively good condition of the organisms and indicate that the brackish environment of the Gulf of Gdansk affords them excellent possibilities for growth.  相似文献   

5.
D. Jaume 《Hydrobiologia》2008,595(1):219-224
Spelaeogriphaceans and thermosbaenaceans are two orders of eyeless, unpigmented peracarid crustaceans represented by very few species from subterranean waters. Spelaeogriphaceans occur only in continental waters, either running or still, in limestone or sandstone caves, or in calcrete aquifers. The four species known are limnic except one occurring in slightly brackish water loosely associated with an endorheic basin. The Thermosbaenacea are primarily marine, with only 18 species recorded in limnic conditions or in brackish inland waters whose salinity does not derive from dilution of seawater. They occur in limestone caves, the interstitial medium associated to alluvial deposits, or in thermo-mineral springs. Spelaeogriphaceans are found on the southern continents, in ancient cratons not affected by sea transgressions at least since the Early Cretaceous, when Gondwana started to break-up. The former integration of these terranes into Gondwana suggests that the penetration of spelaeogriphaceans in continental waters took place previous to the fragmentation of this super continent (starting ca. 140 Ma), and that their current distribution pattern was driven by continental drift. The distribution of the Thermosbaenacea matches precisely the area covered by the ancient Tethys Sea or its coastlines. They are most probably relicts of a once widespread shallow-water marine Tethyan fauna stranded in interstitial or crevicular groundwater during marine regressions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

6.
Incorporation of the fossil record and molecular markers into studies of biological invasions provides new historical perspectives on the incidence of natural and human-mediated invasions of nonindigenous species (NIS). Palaeontological, phylogeographic, and molecular evidence suggests that the natural, multiple colonizations of the Caspian basin via transient connections with the Black Sea and other basins played an important role in shaping the diversity of Caspian fauna. Geographically isolated, conspecific Ponto-Caspian lineages that currently inhabit fragmented habitats in the Ponto-Caspian region show limited genetic divergence, implying geologically recent episodes of gene flow between populations during the Pliocene to Pleistocene. Several molluscan lineages in the Caspian Sea may have descended from Lake Pannon stock before the Late Miocene isolation of the Caspian depression, about 5.8 million years ago. Anthropogenic activities during the 20th century were responsible for a 1800-fold increase in the rate of establishment of new aquatic species in the Caspian Sea compared to the preceding two million years of natural colonization. The observed success of NIS invasions during the 20th century was due primarily to human-mediated transport mechanisms, which were dominated by shipping activities (44%). Human-mediated species transfer has been strongly asymmetrical, toward the Volga Delta and Caspian Sea from or through Black and Azov Seas. Global and regional trade, particularly that mediated by commercial ships, provides dispersal opportunities for nonindigenous invertebrates, indicating that future invasions in the Caspian Sea are anticipated.  相似文献   

7.
We analyzed the role of the waterways of Belarus in the spread of aquatic exotic invertebrates through the central European invasion corridor. Present day Belarus became critically important when in the end of the 18th—beginning of the 19th century three interbasin canals connecting rivers from the Black and Baltic seas basins were constructed for international trade. These canals became important pathways facilitating the spread of aquatic alien species. For more than a hundred years, only Ponto-Caspian species colonized Belarus using ships and especially timber in rafts exported by Russia into Western Europe. In the second half of the 20th century, new vectors of spread appeared in Belarus, such as stocking of economically important invertebrates and accidental introductions. This paper is the first comprehensive review of aquatic exotic invertebrates in Belarus. Currently, 19 exotic aquatic invertebrates are known in Belarus, including 14 species of Ponto-Caspian origin. The rate of spread of aquatic invasive species in the second half of the 20th century increased 7-fold compared to the 19th—beginning of the 20th century. We found a significant positive correlation between the time since initial invasion and number of waterbodies colonized. We predict a further increase in the rate of colonization of Belarus by exotic invertebrates as well as an increase in the diversity of vectors of spread and donor areas of alien species, especially when the ongoing reconstruction of the interbasin canals will be completed and the hydrological connection between Black Sea and Baltic Sea basins will be reestablished after an interruption that has lasted for almost a century.  相似文献   

8.
Several species of scyphozoan medusae occur in river estuaries and other brackish waters but it is often unknown if the planulae settle and the scyphopolyps reproduce in those low-salinity waters. In the present study, scyphozoan species from the German Bight (North Sea) were tested in laboratory experiments to investigate their tolerance of low salinity. Planula larvae released from medusae in salinity 32 were still active after the salinity was reduced to 10 (Cyanea capillata, Cyanea lamarckii) and to 7 (Chrysaora hysoscella) in laboratory treatments. Planulae did not settle on the undersides of floating substrates when salinity was reduced to <20. By contrast, planulae released from C. capillata medusae in Kiel Bight (western Baltic Sea) in salinity 15 developed into polyps in laboratory cultures. Polyps reared from planulae in salinity 36 survived a reduction to 12 (C. capillata, C. lamarckii) and to 8 (Aurelia aurita). Polyps of all tested species strobilated and released young medusae (ephyrae) in salinity 12. These results show a high tolerance of planulae and polyps to low salinity, indicating their possible occurrence in estuaries and brackish waters. In addition to laboratory observations, young C. capillata ephyrae were collected in the western Baltic Sea (Kiel Bight) in salinity 15, which indicates that they were probably released by a local polyp population. We suggest that the polyps of the painfully stinging lion’s mane, C. capillata, may be more widespread in the Baltic Sea than previously assumed and that the occurrence of the medusae may not only depend on inflow of water masses from the North Sea.  相似文献   

9.
Sapota  Mariusz R. 《Hydrobiologia》2004,514(1-3):219-224
In recent years, information concerning the awareness of organisms accidentally introduced into the Baltic Sea has substantially improved. Non-indigenous Estuarine and Marine Organisms (NEMO's) are hazardous for the Baltic ecosystem. Currently, about one hundred species are identified as accidentally or intentionally introduced into the Baltic Sea. Ballast waters and escape from aquaculture are the most important invasion vectors. During the last decade, an invasion of the round goby (Neogobius melanostomus) – a Ponto-Caspian fish species has been observed in the Gulf of Gdańsk. The first record of this fish in the Baltic Sea is from 1990. Early detection of the invader enabled the study of population growth and changes in the area. The first years of invasion were characterized by low numbers of individuals and a limited distribution. Later, the round goby gradually colonized all shallow waters in the western part of the Gulf of Gdańsk. Initially the fish inhabited stony and rocky habitats, but later it also occupied sandy bottoms. The round goby is now the dominating fish species in most of the shallow waters of the Gulf of Gdańsk. Two main factors account for the successful invasion of this fish in the region: the state of ecosystem at the time of the invasion and the biological features of N. melanostomus. In the late 1980s, the shallow waters of the Gulf of Gdańsk were almost devoid of piscivorous fishes. Concurrently, bivalves (a preferred prey of the round goby) have increased. Important is also parental care of laid eggs and reproductive strategy. Population growth potential enables the colonization of nearby regions. The first round gobies in the Vistula Lagoon were collected in 1999 and colonization of other Baltic Sea areas is anticipated.  相似文献   

10.
The native area of gammarids from the so-called ‘Caspian complex’, Pontogammarus robustoides (G.O. Sars, 1894), Obesogammarus crassus (G.O. Sars, 1894), Dikerogammarus haemobaphes (Eichwald, 1841) and D. villosus (Sowinsky, 1894), is associated with brackish waters. Over the last several decades they have colonized the European inland waters and part of the brackish Baltic Sea. It is believed that anthropogenic increase in the salinity of inland waters facilitated their expansion. However, the influence of salinity on the dispersal of gammarid species outside their native area is not fully understood. We tested the hypothesis that salinity was a major factor in determining distribution, based on the abundance of Gammaridae in three coastal areas of low salinity (brackish Baltic), i.e. 0.3, 3.4 and 7.3 PSU, successfully inhabited by them. Additionally, for the first time, the effect of water salinity on the osmoregulatory capacity of O. crassus was examined under laboratory conditions, for the salinities given above. The experiments showed that similarly as in the case of other Caspian complex species, salinity values of about 7 PSU create better conditions for osmoregulation in O. crassus than lower salinities (i.e. 0.3 and 3.4 PSU). In the environmental part of the study, we observed that only D. villosus achieved a significantly higher abundance in the area of 7.3 PSU. Thus, we concluded that in the range of 0.3–7.3 PSU, salinity is not a key factor governing the distribution of Ponto-Caspian gammarids.  相似文献   

11.
The mysid crustacean Hemimysis anomala ('bloody-red shrimp') is one of the most recent participants in the invasion of European inland waters by Ponto-Caspian species. Recently the species also became established in England and the Laurentian Great Lakes of North America. Using information from mitochondrial cytochrome oxidase I (COI) gene sequences, we traced the invasion pathways of H. anomala ; the inferences were enabled by the observed phylogeographical subdivision among the source area populations in the estuaries of the Ponto-Caspian basin. The data distinguish two routes to northern and western Europe used by distinct lineages. One route has been to and through the Baltic Sea and further to the Rhine delta, probably from a population intentionally introduced to a Lithuanian water reservoir from the lower Dnieper River (NW Black Sea area) in 1960. The other lineage is derived from the Danube delta and has spread across the continent up the Danube River and further through the Main–Danube canal down to the Rhine River delta. Only the Danube lineage was found in England and in North America. The two lineages appear to have met secondarily and are now found intermixed at several sites in NW Europe, including the Rhine and waters linked with the man-made Mittellandkanal that interconnects the Rhine and Baltic drainage systems.  相似文献   

12.
There are close to 2,000 subjective species and about 200 genera of Recent non-marine Ostracoda. Together, Cyprididae (1,000 spp.) and Candonidae (c. 550 spp.) represent more than 75% of the extant specific diversity; the remaining 11 families comprise the other 25% of the species. The Palaearctic region has the highest absolute non-marine ostracod diversity, followed by the Afrotropical. The Australian region has the highest relative endemicity. About 90% of the species and 60% of the genera occur in one zoogeographical region only. This means that all the biological mechanisms which lead up to efficient dispersal and which are present in at least part of the non-marine Ostracoda (e.g. brooding, drought-resistant eggs, parthenogenesis) have not induced common cosmopolitan distributions in ostracods. Several habitats are hotspots for ostracod diversity and endemicity. For example, it appears that the ancient lakes hold up to 25% of the total ostracod diversity. Other speciation-prone habitats are groundwater, temporary pools and Australian salt lakes; in the latter two instances, cladogenesis has often been paralleled by gigantism. The present ostracod diversity results from 9 to 12 separate invasions of the non-marine habitat, starting about 400 Myr ago. Genetic diversity can be very different in different species, mostly, but not always, related to reproductive mode. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

13.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

14.
Evaluating the state of benthic communities has played an important role in water quality assessments. Indices incorporating species sensitivities, richness and densities are commonly applied. In Europe, the importance of benthic indices has increased in the last years with the implementation of the European Marine Strategy Framework Directive (MSFD) which at the same time demands the applicability of an index across regional scales. To date, environmental variability is rarely considered in benthic indices and most sensitivity rankings have the disadvantages of static values (i.e. the same value in all areas), expert judgement and a limited geographical range.This study presents species sensitivity values calculated along environmental gradients for the Baltic Sea. Sensitivities were calculated according to the procedure of the Benthic Quality Index (BQI). We created a matrix of subregions, classes of salinity, depth and gear to identify comparable subsets for data analysis. Altogether, 19 subsets were defined within the Baltic Sea basins. Sensitivity values were calculated for 329 species out of a total of 678 species that were recorded in this study. Sensitivity values of taxa vary between subsets as it was expected for different environmental conditions. Most sensitivity values can be assigned to species occurring in euhaline and polyhaline waters. Distribution of species with high and low sensitivity values differed along the salinity gradient. In euhaline waters more species with high sensitivity values occurred than species with low sensitivity values, while in mesohaline waters the ratio of high and low sensitivity values among species was almost equal. In oligohaline waters more species with lower sensitivity values were present.For the first time, sensitivity values were calculated for a large number of species using the same method for the entire Baltic Sea. This results in a Baltic-wide comprehensive set of sensitivity values based on a dataset across subregional borders, and divided along environmental gradients and gear type. The same principles can be applied to transient waters from rivers to coastal lagoons as well as to other environments with gradients of, e.g. hydrodynamic characteristics. Publicly available sensitivity values will increase transparency and support the improvement of state assessments under the MSFD.  相似文献   

15.
A new species of the thermophylic Tethyan relict prawn Typhlatya is described from two anchialine caves near Perpignan (southern France). The new species is closely related to a congener known only from a freshwater cave at Castellón (eastern Spain), about 400 km to the south-west, differing apparently only in the size and shape of the rostrum and the armature of the dactylus of the fifth pereiopod. Based on palaeogeographical evidence and assuming a sister-group relationship between both species, we suggest that their common ancestor could not be older than early Pliocene in age, and that it was already a stygobiont taxon adapted to live in shallow-water marine crevicular habitats. This ancestor would have vanished from the western Mediterranean after the cooling associated with the onset of northern Hemisphere glaciation, about 3 Mya, as documented for other Mediterranean marine taxa. Indeed, the genus is completely stygobiont and does not occur in fluvial environments. The Pyrenees represent a watershed boundary that eliminates the possibility of the derivation of one species from the other by active dispersal after establishment in continental waters.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 387–414.  相似文献   

16.
A synthesis of current knowledge of the Cladocera living in non-surface waters is provided. For all 94 species and subspecies recorded (Dec. 1994) we give information on their ranges, ecological characteristics, and a review of literature data. We also give a historic survey of the development of concepts, identify categories among groundwater-dwelling species, and discuss their adaptations and the evolutionary lines present. Of the estimated total of c. 450 non-marine Cladocera of the world, c. 20% may occur in underground aquatic habitats, but true groundwater forms (stygobionts or stygobites) are relatively few, possibly not more than 10 species (c. 2.5% of the total). This number may increase, as attention is given to subterranean habitats outside Europe.  相似文献   

17.

Background

Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation.

Principal Findings

We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean.

Significance

This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles.  相似文献   

18.
The distribution of calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea was quantitatively analysed. The samples contain 11 cyst species and the vegetative coccoid Thoracosphaera heimii. Cyst abundance increases towards the deeper parts of the basins and is generally higher in the eastern Mediterranean Sea. Three major distribution characteristics exist: (1) different assemblages in oceanic and neritic regions, (2) little agreement with the associations of areas studied so far like the Atlantic Ocean, and (3) a unique oceanic assemblage in the eastern Mediterranean Sea. A gradual change in cyst assemblages from the western to the eastern Mediterranean Sea was observed and statistically compared with the main environmental gradients in the upper water column. Temperature, nitrate concentration and possibly salinity appear to be the most important factors controlling cyst production. Three groups containing cysts with similar environmental preferences can be distinguished: (1) an eastern Mediterranean group related to relatively high temperature and salinity but low nitrate concentration, (2) a group of more or less consistently abundant cosmopolitan species tolerating or even preferring relatively low temperature and salinity but high nitrate concentration, and (3) a group containing species that are possibly adapted to neritic environments and have probably been transported from coastal areas into the studied regions. In contrast to other calcareous plankton, calcareous dinoflagellate cysts correlate strongly with the main environmental gradients in the Mediterranean Sea, bearing a high potential for palaeoenvironmental reconstructions.  相似文献   

19.
A comparative vulnerability analysis of 16 selected benthic habitat types in the SE Baltic Sea waters and the Curonian lagoon, including Klaipeda strait, was performed using long-term monitoring datasets (1980–2003) and results of several other surveys in the lagoon and the sea. Results indicated that invasive species richness (number of alien species per habitat) in lagoon habitats was significantly higher than in the sea. Habitats formed by artificial rock and stone, sand, mud, and habitats modified by zebra mussel shell deposits appeared to be the most invaded. Highest invasive species richness occurred in habitats with high native species richness indicating that the main factors driving native species distribution (such as favourable physical conditions, habitat alterations generated by human or/and biotic activities) are also driving aquatic invaders. Physical factors distinguished to be the most important for native and invasive species distribution were salinity, depth range (expressed by the maximal and minimal depths difference within a habitat), shallowness of a habitat (expressed by a minimal depth), and availability of a hard substrate.  相似文献   

20.
Remane's Artenminimum at the horohalinicum is a fundamental concept in ecology to describe and explain the distribution of organisms along salinity gradients. However, a recent metadata analysis challenged this concept for protists, proposing a species maximum in brackish waters. Due to data bias, this literature-based investigation was highly discussed. Reliable data verifying or rejecting the species minimum for protists in brackish waters were critically lacking. Here, we sampled a pronounced salinity gradient along a west–east transect in the Baltic Sea and analysed protistan plankton communities using high-throughput eDNA metabarcoding. A strong salinity barrier at the upper limit of the horohalinicum and 10 psu appeared to select for significant shifts in protistan community structures, with dinoflagellates being dominant at lower salinities, and dictyochophytes and diatoms being keyplayers at higher salinities. Also in vertical water column gradients in deeper basins (Kiel Bight, Arkona and Bornholm Basin) appeared salinity as significant environmental determinant influencing alpha- and beta-diversity patterns. Importantly, alpha-diversity indices revealed species maxima in brackish waters, that is, indeed contrasting Remane's Artenminimum concept. Statistical analyses confirmed salinity as the major driving force for protistan community structuring with high significance. This suggests that macrobiota and microbial eukaryotes follow fundamentally different rules regarding diversity patterns in the transition zone from freshwater to marine waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号