首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

2.
Saccharomyces cells with one unrepaired double-strand break (DSB) adapt after checkpoint-mediated G2/M arrest. Adaptation is accompanied by loss of Rad53p checkpoint kinase activity and Chk1p phosphorylation. Rad53p kinase remains elevated in yku70delta and cdc5-ad cells that fail to adapt. Permanent G2/M arrest in cells with increased single-stranded DNA is suppressed by the rfa1-t11 mutation, but this RPA mutation does not suppress permanent arrest in cdc5-ad cells. Checkpoint kinase activation and inactivation can be followed in G2-arrested cells, but there is no kinase activation in G1-arrested cells. We conclude that activation of the checkpoint kinases in response to a single DNA break is cell cycle regulated and that adaptation is an active process by which these kinases are inactivated.  相似文献   

3.
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in haploid cells is generally restricted to S/G2 cell cycle phases, when DNA has been replicated and a sister chromatid is available as a repair template. This cell cycle specificity depends on cyclin-dependent protein kinases (Cdk1 in Saccharomyces cerevisiae), which initiate HR by promoting 5'-3' nucleolytic degradation of the DSB ends. Whether Cdk1 regulates other HR steps is unknown. Here we show that yku70Δ cells, which accumulate single-stranded DNA (ssDNA) at the DSB ends independently of Cdk1 activity, are able to repair a DSB by single-strand annealing (SSA) in the G1 cell cycle phase, when Cdk1 activity is low. This ability to perform SSA depends on DSB resection, because both resection and SSA are enhanced by the lack of Rad9 in yku70Δ G1 cells. Furthermore, we found that interchromosomal noncrossover recombinants are generated in yku70Δ and yku70Δ rad9Δ G1 cells, indicating that DSB resection bypasses Cdk1 requirement also for carrying out these recombination events. By contrast, yku70Δ and yku70Δ rad9Δ cells are specifically defective in interchromosomal crossover recombination when Cdk1 activity is low. Thus, Cdk1 promotes DSB repair by single-strand annealing and noncrossover recombination by acting mostly at the resection level, whereas additional events require Cdk1-dependent regulation in order to generate crossover outcomes.  相似文献   

4.
Saccharomyces cells suffering a DNA double-strand break (DSB) ultimately escape checkpoint-mediated G2/M arrest either by recovery once the lesion is repaired or by adaptation if the lesion proves irreparable. Cells lacking the PP2C-like phosphatases Ptc2 and Ptc3 are unable to adapt to a HO-induced DSB and are also defective in recovering from a repairable DSB. In contrast, overexpression of PTC2 rescues adaptation-defective yku80Delta and cdc5-ad mutants. These effects are not explained by alterations either in the processing of DSB ends or in DSB repair. In vivo and in vitro evidence suggests that phosphorylated forms of Ptc2 and Ptc3 specifically bind to the Rad53 FHA1 domain and inactivate Rad53-dependent pathways during adaptation and recovery by dephosphorylating Rad53.  相似文献   

5.
Shinohara M  Sakai K  Shinohara A  Bishop DK 《Genetics》2003,163(4):1273-1286
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with levels of interhomolog crossover (CO) and noncrossover recombination similar to, or slightly greater than, those in wild type. Importantly, tid1 mutants show a marked defect in crossover interference, a mechanism that distributes crossover events nonrandomly along chromosomes during meiosis. Previous work showed that dmc1Delta mutants are strongly defective in strand invasion and meiotic progression and that these defects can be partially suppressed by increasing the copy number of RAD54. Tetrad analysis is used to show that meiotic recombination in RAD54-suppressed dmc1Delta cells is similar to that in tid1; the frequency of COs and gene conversions is near normal, but crossover interference is defective. These results support the proposal that crossover interference acts at the strand invasion stage of recombination.  相似文献   

6.
The yeast Mre11-Rad50-Xrs2 (MRX) and Ku complexes regulate single-strand resection at DNA double-strand breaks (DSB), a key early step in homologous recombination (HR). A prior plasmid gap repair study showed that mre11 mutations, which slow single-strand resection, reduce gene conversion tract lengths and the frequency of associated crossovers. Here we tested whether mre11Delta or nuclease-defective mre11 mutations reduced gene conversion tract lengths during HR between homologous chromosomes in diploid yeast. We found that mre11 mutations reduced the efficiency of HR but did not reduce tract lengths or crossovers, despite substantially reduced end-resection at the test (ura3) locus. End-resection is increased in yku70Delta, but this change also had no effect on tract lengths. Thus, heteroduplex formation and tract lengths are not regulated by the extent of end-resection during DSB repair in a chromosomal context. In a plasmid-chromosome DSB repair assay, tract lengths were again similar in wild-type and mre11Delta, but they were reduced in mre11Delta in a gap repair assay. These results indicate that tract lengths are not affected by the extent of end processing when broken ends can invade nearby sites, perhaps because MRX coordination of the two broken ends is dispensable when ends invade nearby sites. Although HR outcome was largely unaffected in mre11 mutants, break-induced replication (BIR) and chromosome loss increased, suggesting that Mre11 function in mitotic HR is limited to early HR stages. Interestingly, yku70Delta suppressed BIR in mre11 mutants. BIR is also elevated in rad51 mutants, but yku70Delta did not suppress BIR in a rad51 background. These results indicate that Mre11 functions in Rad51-independent BIR, and that Ku functions in Rad51-dependent BIR.  相似文献   

7.
In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.  相似文献   

8.
Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 mutants to ionizing radiation and MMS, but did not increase resistance in strains defective in recombination (rad51, rad52, rad54, rad59) or NHEJ only (yku70, sir4). Increased Exo1 or TLC1 RNA did not alter checkpoint responses or restore NHEJ proficiency, but DNA repair defects of yku70 and rad27 (fen) mutants were differentially suppressed by the two genes. Overexpression of Exo1, but not mutant proteins containing substitutions in the conserved nuclease domain, increased recombination and suppressed HO and EcoRI endonuclease-induced killing of rad50 strains. exo1 rad50 mutants lacking both nuclease activities exhibited a high proportion of enlarged, G2-arrested cells and displayed a synergistic decrease in DSB-induced plasmid:chromosome recombination. These results support a model in which the nuclease activity of the Rad50/Mre11/Xrs2 complex is required for recombinational repair, but not NHEJ. We suggest that the 5'-3' exo activity of Exo1 is able to substitute for Rad50/Mre11/Xrs2 in rescission of specific classes of DSB end structures. Gene-specific suppression by TLC1, which encodes the RNA subunit of the yeast telomerase complex, demonstrates that components of telomerase can also impact on DSB repair pathways.  相似文献   

9.
The RAD54 gene, which encodes a protein in the SWI2/SNF2 family, plays an important role in recombination and DNA repair in Saccharomyces cerevisiae. The yeast genome project revealed a homologue of RAD54, RDH54/TID1. Properties of the rdh54/tid1 mutant and the rad54 rdh54/tid1 double mutant are shown for mitosis and meiosis. The rad54 mutant is sensitive to the alkylating agent, methyl methanesulfonate (MMS), and is defective in interchromosomal and intrachromosomal gene conversion. The rdh54/tid1 single mutant, on the other hand, does not show any significant deficiency in mitosis. However, the rad54 rdh54/tid1 mutant is more sensitive to MMS and more defective in interchromosomal gene conversion than is the rad54 mutant, but shows the same frequency of intrachromosomal gene conversion as the rad54 mutant. These results suggest that RDH54/TID1 is involved in a minor pathway of mitotic recombination in the absence of RAD54. In meiosis, both single mutants produce viable spores at slightly reduced frequency. However, only the rdh54/tid1 mutant, but not the rad54 mutant, shows significant defects in recombination: retardation of the repair of meiosis-specific double-strand breaks (DSBs) and delayed formation of physical recombinants. Furthermore, the rad54 rdh54/tid1 double mutant is completely defective in meiosis, accumulating DSBs with more recessed ends than the wild type and producing fewer physical recombinants than the wild type. These results suggest that one of the differences between the late stages of mitotic recombination and meiotic recombination might be specified by differential dependency on the Rad54 and Rdh54/Tid1 proteins.  相似文献   

10.
DNA double-strand breaks (DSBs) in yeast are repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad51 forms nucleoprotein filaments at processed broken ends that effect strand exchange, forming heteroduplex DNA (hDNA) that gives rise to a gene conversion tract. We hypothesized that excess Rad51 would increase gene conversion tract lengths. We found that excess Rad51 reduced DSB-induced HR but did not alter tract lengths or other outcomes including rates of crossovers, break-induced replication, or chromosome loss. Thus, excess Rad51 appears to influence DSB-induced HR at an early stage. MAT heterozygosity largely mitigated the inhibitory effect of excess Rad51 on allelic HR, but not direct repeat HR. Excess Rad52 had no effect on DSB-induced HR efficiency or outcome, nor did it mitigate the dominant negative effects of excess Rad51. Excess Rad51 had little effect on DSB-induced lethality in wild-type cells, but it did enhance lethality in yku70Delta mutants. Interestingly, dnl4Delta showed marked DSB-induced lethality but this was not further enhanced by excess Rad51. The differential effects of yku70Delta and dnl4Delta indicate that the enhanced killing with excess Rad51 in yku70Delta is not due to its NHEJ defect, but may reflect its defect in end-protection and/or its inability to escape from checkpoint arrest. Srs2 displaces Rad51 from nucleoprotein filaments in vitro, suggesting that excess Rad51 might antagonize Srs2. We show that excess Rad51 does not reduce survival of wild-type cells treated with methylmethane sulfonate (MMS), or cells suffering a single DSB. In contrast, excess Rad51 sensitized srs2Delta cells to both MMS and a single DSB. These results support the idea that excess Rad51 antagonizes Srs2, and underscores the importance of displacing Rad51 from nucleoprotein filaments to achieve optimum repair efficiency.  相似文献   

11.
RAD53 and MEC1 are essential Saccharomyces cerevisiae genes required for the DNA replication and DNA damage checkpoint responses. Their lethality can be suppressed by increasing the intracellular pool of deoxynucleotide triphosphates. We report that deletion of YKU70 or YKU80 suppresses mec1Delta, but not rad53Delta, lethality. We show that suppression of mec1Delta lethality is not due to Ku--associated telomeric defects but rather results from the inability of Ku- cells to efficiently repair DNA double strand breaks by nonhomologous end joining. Consistent with these results, mec1Delta lethality is also suppressed by lif1Delta, which like yku70Delta and yku80Delta, prevents nonhomologous end joining. The viability of yku70Delta mec1Delta and yku80Delta mec1Delta cells depends on the ATM-related Tel1 kinase, the Mre11-Rad50-Xrs2 complex, and the DNA damage checkpoint protein Rad9. We further report that this Mec1-independent pathway converges with the Rad53/Dun1-regulated checkpoint kinase cascade and leads to the degradation of the ribonucleotide reductase inhibitor Sml1.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, Cdc13, Yku, and telomerase define three parallel pathways for telomere end protection that prevent chromosome instability and death by senescence. We report here that cdc13-1 yku70delta mutants generated telomere deprotection-resistant cells that, in contrast with telomerase-negative senescent cells, did not display classical crisis events. cdc13-1 yku70delta cells survived telomere deprotection by exclusively amplifying TG(1-3) repeats (type II recombination). In a background lacking telomerase (tlc1delta), this process predominated over type I recombination (amplification of subtelomeric Y' sequences). Strikingly, inactivation of the Rad50/Rad59 pathway (which is normally required for type II recombination) in cdc13-1 yku70delta or yku70delta tlc1delta mutants, but also in cdc13-1 YKU70(+) tlc1delta mutants, still permitted type II recombination, but this process was now entirely dependent on the Rad51 pathway. In addition, delayed senescence was observed in cdc13-1 yku70delta rad51delta and cdc13-1 tlc1delta rad51delta cells. These results demonstrate that in wild-type cells, masking by Cdc13 and Yku prevents the Rad51 pathway from amplifying telomeric TG(1-3) sequences. They also suggest that Rad51 is more efficient than Rad50 in amplifying the sequences left uncovered by the absence of Cdc13 or Yku70.  相似文献   

13.
Hexavalent chromium is known to be a potent carcinogen that leads to many different DNA lesions, including DNA-protein crosslinks, and single- and double-strand breaks. In Saccharomyces cerevisiae, DNA double-strand breaks are mainly repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ) repair pathways. Here, we show that mutants deficient in NHEJ (yku70Delta, rad50Delta, dnl4Delta, mre11Delta, xrs2Delta) of S. cerevisiae are more sensitive to Cr(VI) toxic effects than wild-type cells. Also, a deletion mutant of SAE2 showed a similar sensitivity to Cr(VI), even though it has no apparent direct role in NHEJ. We also found that double mutants in HR and NHEJ (yku70Delta/rad52Delta, rad50Delta/rad52Delta, dnl4Delta/rad52Delta, mre11Delta/rad52Delta, xrs2Delta/rad52Delta) are synergistically more sensitive to Cr(VI) exposure than any of the single mutants, indicating that both repair pathways are involved in the repair of Cr(VI)-induced lesions. Finally, when the NHEJ mutants were exposed to Cr(VI) under anaerobic growth conditions, Cr(VI) toxicity was suppressed.  相似文献   

14.
Smith S  Banerjee S  Rilo R  Myung K 《Genetics》2008,178(2):693-701
The temperature-sensitive phenotypes of yku70Delta and yku80Delta have provided a useful tool for understanding telomere homeostasis. Mutating the helicase domain of the telomerase inhibitor Pif1 resulted in the inactivation of cell cycle checkpoints and the subsequent rescue of temperature sensitivity of the yku70Delta strain. The inactivation of Pif1 in yku70Delta increased overall telomere length. However, the long G-rich, single-stranded overhangs at the telomeres, which are the major cause of temperature sensitivity, were slightly increased. Interestingly, the rescue of temperature sensitivity in strains having both pif1-m2 and yku70Delta mutations depended on the homologous recombination pathway. Furthermore, the BLM/WRN helicase yeast homolog Sgs1 exacerbated the temperature sensitivity of the yku70Delta strain. Therefore, the yKu70-80 heterodimer and telomerase maintain telomere size, and the helicase activity of Pif1 likely also helps to balance the overall size of telomeres and G-rich, single-stranded overhangs in wild-type cells by regulating telomere protein homeostasis. However, the absence of yKu70 may provide other proteins such as those involved in homologous recombination, Sgs1, or Pif1 additional access to G-rich, single-stranded DNA and may determine telomere size, cell cycle checkpoint activation, and, ultimately, temperature sensitivity.  相似文献   

15.
Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.  相似文献   

16.
In the presence of double strand breaks, DNA damage checkpoint halts cell cycle progression. However, cells ultimately escape the checkpoint arrest and re-enter cell cycle in the presence of irreparable DNA damage. cdc5-ad was identified as a mutant that fails to adapt to the cell cycle arrest induced by DNA damage checkpoint. In budding yeast, Cdc5 protein kinase is a component of both MEN and FEAR pathways that are required for mitotic exit. It remains unclear whether the adaptation defect of cdc5-ad mutant cells is related to the function of Cdc5 in mitotic exit. Here we present evidence indicating that cdc5-ad mutant cells exhibit defects in mitotic exit. cdc5-ad mutant cells are sensitive to high dosage of Amn1, a negative regulator of MEN. It also shows synthetic growth defects with mutants in MEN pathway. Moreover, mutants in FEAR pathway exhibit defects in DNA damage adaptation. Thus, we conclude that the compromised mitotic exit pathway contributes to DNA damage adaptation defects in cdc5-ad mutant cells.  相似文献   

17.
Klein HL 《Genetics》2001,157(2):557-565
The SRS2 gene of Saccharomyces cerevisiae encodes a DNA helicase that is active in the postreplication repair pathway and homologous recombination. srs2 mutations are lethal in a rad54Delta background and cause poor growth or lethality in rdh54Delta, rad50Delta, mre11Delta, xrs2Delta, rad27Delta, sgs1Delta, and top3Delta backgrounds. Some of these genotypes are known to be defective in double-strand break repair. Many of these lethalities or poor growth can be suppressed by mutations in other genes in the DSB repair pathway, namely rad51, rad52, rad55, and rad57, suggesting that inhibition of recombination at a prior step prevents formation of a lethal intermediate. Lethality of the srs2Delta rad54Delta and srs2Delta rdh54Delta double mutants can also be rescued by mutations in the DNA damage checkpoint functions RAD9, RAD17, RAD24, and MEC3, indicating that the srs2 rad54 and srs2 rdh54 mutant combinations lead to an intermediate that is sensed by these checkpoint functions. When the checkpoints are intact the cells never reverse from the arrest, but loss of the checkpoints releases the arrest. However, cells do not achieve wild-type growth rates, suggesting that unrepaired damage is still present and may lead to chromosome loss.  相似文献   

18.
Broken chromosomes can be repaired by several homologous recombination mechanisms, including gene conversion and break-induced replication (BIR). In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) is normally repaired by gene conversion. Previously, we have shown that in the absence of RAD52, repair is nearly absent and diploid cells lose the broken chromosome; however, in cells lacking RAD51, gene conversion is absent but cells can repair the DSB by BIR. We now report that gene conversion is also abolished when RAD54, RAD55, and RAD57 are deleted but BIR occurs, as with rad51Delta cells. DSB-induced gene conversion is not significantly affected when RAD50, RAD59, TID1 (RDH54), SRS2, or SGS1 is deleted. Various double mutations largely eliminate both gene conversion and BIR, including rad51Delta rad50Delta, rad51Delta rad59Delta, and rad54Delta tid1Delta. These results demonstrate that there is a RAD51- and RAD54-independent BIR pathway that requires RAD59, TID1, RAD50, and presumably MRE11 and XRS2. The similar genetic requirements for BIR and telomere maintenance in the absence of telomerase also suggest that these two processes proceed by similar mechanisms.  相似文献   

19.
Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.  相似文献   

20.
Klassen R  Krampe S  Meinhardt F 《DNA Repair》2007,6(12):1864-1875
The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (NHEJ), the two alternative repair mechanisms acting on DNA double strand breaks (DSB). As mutants defective in genes of the RAD52 epistasis group react hypersensitive and cells lacking YKU70 or YKU80 are partially resistant, the yKu70/80 complex facilitates PaT toxicity, whereas HR is antagonistic. In contrast to yku70 and yku80, lif1 mutants, the latter being defective in the ligation step of NHEJ, are PaT sensitive, confining toxicity promoting effects of NHEJ to the DSB end binding Ku proteins. Since rad52 yku80 double mutants display strong hypersensitivity, yku80 mediated resistance depends on HR. Opposite effects of the yKu70/80 complex and HR are consistent with the occurrence of replication dependent (one sided) DSBs in PaT treated cells. Concordantly, two cellular markers signaling DSBs are induced during PaT mediated S-phase arrest, i.e. histone H2A phosphorylation and formation of subnuclear repair foci by GFP tagged recombination protein Rad52. As only moderate chromosome fragmentation could be detected by PFGE, transient occurrence and efficient in vivo repair of PaT induced DSBs is assumed. Consistent with replication dependent DSB formation induced by PaT, we demonstrate a protective function of the RecQ helicase Sgs1 and the structure specific endonuclease Mus81, both of which are considered to be involved in processing and restart of stalled replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号