首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.  相似文献   

2.
Vallente RU  Cheng EY  Hassold TJ 《Chromosoma》2006,115(3):241-249
Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633–638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363–365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405–408; Pathak and Elder (1980) Hum Genet 54:171–175; Solari (1980) Chromosoma 81:315–337; Speed (1984) Hum Genet 66:176–180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215–226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833–848; Vidal et al. (1982) Hum Genet 60:301–304; Bojko (1983) Carlsberg Res Commun 48:285–305; Bojko (1985) Carlsberg Res Commun 50:43–72; Templado et al. (1984) Hum Genet 67:162–165; Navarro et al. (1986) Hum Reprod 1:523–527; Garcia et al. (1989) Hum Genet 2:147–53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.The synaptonemal complex–50 years  相似文献   

3.
Liu  Hanwenheng  Gordon  Spencer G.  Rog  Ofer 《Chromosoma》2021,130(4):237-250
Chromosoma - Alignment of the parental chromosomes during meiotic prophase is key to the formation of genetic exchanges, or crossovers, and consequently to the successful production of gametes. In...  相似文献   

4.
The meiotically expressed Zip3 protein is found conserved from Saccharomyces cerevisiae to humans. In baker's yeast, Zip3p has been implicated in synaptonemal complex (SC) formation, while little is known about the protein's function in multicellular organisms. We report here the successful targeted gene disruption of zhp-3 (K02B12.8), the ZIP3 homolog in the nematode Caenorhabditis elegans. Homozygous zhp-3 knockout worms show normal homologue pairing and SC formation. Also, the timing of appearance and the nuclear localization of the recombination protein Rad-51 seem normal in these animals, suggesting proper initiation of meiotic recombination by DNA double-strand breaks. However, the occurrence of univalents during diplotene indicates that C. elegans ZHP-3 protein is essential for reciprocal recombination between homologous chromosomes and thus chiasma formation. In the absence of ZHP-3, reciprocal recombination is abolished and double-strand breaks seem to be repaired via alternative pathways, leading to achiasmatic chromosomes and the occurrence of univalents during meiosis I. Green fluorescent protein-tagged C. elegans ZHP-3 forms lines between synapsed chromosomes and requires the SC for its proper localization.  相似文献   

5.
The synaptonemal complex (SC) is a proteinaceous structure of chromosome bivalents whose assembly is indispensable for the successful progression of the first meiotic division of sexually reproducing organisms. In this mini-review we will focus on recent progress dealing with the composition and assembly of the mammalian SC. These advances mainly resulted from the systematic use of knockout mice for all known mammalian SC proteins as well as from protein polymerization studies performed in heterologous systems.  相似文献   

6.
During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere–associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(−) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(−) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore–microtubule (k–MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(−) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k–MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.  相似文献   

7.
R Padmore  L Cao  N Kleckner 《Cell》1991,66(6):1239-1256
In synchronous cultures of S. cerevisiae undergoing meiosis, an early event in the meiotic recombination pathway, site-specific double strand breaks (DSBs), occurs early in prophase, in some instances well before tripartite synaptonemal complex (SC) begins to form. This observation, together with previous results, supports the view that events involving DSBs are required for SC formation. We discuss the possibility that the mitotic pathway for recombinational repair of DSBs served as the primordial mechanism for connecting homologous chromosomes during the evolution of meiosis. DSBs disappear during the period when tripartite SC structure is forming and elongating (zygotene); presumably, they are converted to another type of recombination intermediate. Neither DSBs nor mature recombinant molecules are present when SCs are full length (pachytene). Mature reciprocally recombinant molecules arise at the end of or just after pachytene. We suggest that the SC might coordinate recombinant maturation with other events of meiosis.  相似文献   

8.
During meiotic prophase homologous chromosomes find each other and pair. Then they synapse, as the linear protein core (axial element or lateral element) of each homologous chromosome is joined together by a transverse central element, forming the tripartite synaptonemal complex (SC). Ten uncloned Zea mays mutants in our collection were surveyed by transmission electron microscopy by making silver-stained spreads of SCs to identify mutants with non-homologous synapsis or improper synapsis. To analyse the mutants further, zyp1, the maize orthologue of the Arabidopsis central element component ZYP1 was cloned and an antibody was made against it. Using antibodies against ZYP1 and the lateral element components AFD1 and ASY1, it was found that most mutants form normal SCs but are defective in pairing. The large number of non-homologous synapsis mutants defective in pairing illustrates that synapsis and pairing can be uncoupled. Of the ten mutants studied, only dsy2 undergoes normal homologous chromosome recognition needed for homologous pairing. The dsy2 mutation fails to maintain the SC. ZYP1 elongation is blocked at zygotene, and only dots of ZYP1 are seen at prophase I. Another mutant, mei*N2415 showed incomplete but homologous synapsis and ASY1 and AFD1 have a normal distribution. Although installation of ZYP1 is initiated at zygotene, its progression is slowed down and not completed by pachytene in some cells and ZYP1 is not retained on pachytene chromosomes. The mutants described here are now available through the Maize Genetics Cooperation Stock Center (http://maizecoop.cropsci.uiuc.edu/).  相似文献   

9.
Carpenter AT 《Genetics》2003,163(4):1337-1356
The meiotic phenotypes of two mutant alleles of the mei-W68 gene, 1 and L1, were studied by genetics and by serial-section electron microscopy. Despite no or reduced exchange, both mutant alleles have normal synaptonemal complex. However, neither has any early recombination nodules; instead, both exhibit high numbers of very long (up to 2 microm) structures here named "noodles." These are hypothesized to be formed by the unchecked extension of identical but much shorter structures ephemerally seen in wild type, which may be precursors of early recombination nodules. Although the mei-W68(L1) allele is identical to the mei-W68(1) allele in both the absence of early recombination nodules and a high frequency of noodles (i.e., it is amorphic for the noodle phene), it is hypomorphic in its effects on exchange and late recombination nodules. The differential effects of this allele on early and late recombination nodules are consistent with the hypothesis that Drosophila females have two separate recombination pathways-one for simple gene conversion, the other for exchange.  相似文献   

10.
Reddy KC  Villeneuve AM 《Cell》2004,118(4):439-452
Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.  相似文献   

11.
Nuclear pore complexes (NPCs) are large macromolecular structures embedded in the nuclear envelope (NE), where they facilitate exchange of molecules between the cytoplasm and the nucleoplasm. In most cell types, NPCs are evenly distributed around the NE. However, the mechanisms dictating NPC distribution are largely unknown. Here, we used the model organism Caenorhabditis elegans to identify genes that affect NPC distribution during early embryonic divisions. We found that down-regulation of the Sm proteins, which are core components of the spliceosome, but not down-regulation of other splicing factors, led to clustering of NPCs. Down-regulation of Sm proteins also led to incomplete disassembly of NPCs during mitosis, but had no effect on lamina disassembly, suggesting that the defect in NPC disassembly was not due to a general defect in nuclear envelope breakdown. We further found that these mitotic NPC remnants persisted on an ER membrane that juxtaposes the mitotic spindle. At the end of mitosis, the remnant NPCs moved toward the chromatin and the reforming NE, where they ultimately clustered by forming membrane stacks perforated by NPCs. Our results suggest a novel, splicing-independent, role for Sm proteins in NPC disassembly, and point to a possible link between NPC disassembly in mitosis and NPC distribution in the subsequent interphase.  相似文献   

12.
Hawley RS 《Genetics》2011,189(2):405-409
The structure of the meiosis-specific synaptonemal complex, which is perhaps the central visible characteristic of meiotic prophase, has been a matter of intense interest for decades. Although a general picture of the interactions between the transverse filament proteins that create this structure has emerged from studies in a variety of organisms, a recent analysis of synaptonemal complex structure in Caenorhabditis elegans by Schild-Prüfert et al. (2011) has provided the clearest picture of the structure of the architecture of a synaptonemal complex to date. Although the transverse filaments of the worm synaptonemal complex are assembled differently then those observed in yeast, mammalian, and Drosophila synaptonemal complexes, a comparison of the four assemblies shows that achieving the overall basic structure of the synaptonemal complex is far more crucial than conserving the structures of the individual transverse filaments.  相似文献   

13.
Agarwal S  Roeder GS 《Cell》2000,102(2):245-255
In budding yeast, absence of the meiosis-specific Zip3 protein (also known as Cst9) causes synaptonemal complex formation to be delayed and incomplete. The Zip3 protein colocalizes with Zip2 at discrete foci on meiotic chromosomes, corresponding to the sites where synapsis initiates. Observations suggest that Zip3 promotes synapsis by recruiting the Zip2 protein to chromosomes and/or stabilizing the association of Zip2 with chromosomes. Zip3 interacts with a number of gene products involved in meiotic recombination, including proteins that act at both early (Mre11, Rad51, and Rad57) and late (Msh4 and Msh5) steps in the exchange process. We speculate that Zip3 is a component of recombination nodules and serves to link the initiation of synapsis to meiotic recombination.  相似文献   

14.
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.  相似文献   

15.
RF3 was initially characterized as a factor that stimulates translational termination in an in vitro assay. The factor has a GTP binding site and shows sequence similarity to elongation factors EF-Tu and EF-G. Paradoxically, addition of GTP abolishes RF3 stimulation in the classical termination assay, using stop triplets. We here show GTP hydrolysis, which is only dependent on the simultaneous presence of RF3 and ribosomes. Applying a new termination assay, which uses a minimessenger RNA instead of separate triplets, we show that GTP in the presence of RF3 stimulates termination at rate-limiting concentrations of RF1. We show that RF3 can substitute for EF-G in RRF-dependent ribosome recycling reactions in vitro. This activity is GTP-dependent. In addition, excess RF3 and RRF in the presence of GTP caused release of nonhydrolyzed fmet-tRNA. This supports previous genetic experiments, showing that RF3 might be involved in ribosomal drop off of peptidyl-tRNA. In contrast to GTP involvement of the above reactions, stimulation of termination with RF2 by RF3 was independent of the presence of GTP. This is consistent with previous studies, indicating that RF3 enhances the affinity of RF2 for the termination complex without GTP hydrolysis. Based on our results, we propose a model of how RF3 might function in translational termination and ribosome recycling.  相似文献   

16.
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.  相似文献   

17.
Highlights? PP2A phosphatase is essential for centriole formation in C. elegans ? PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex ? PP2A-mediated dephosphorylation of SAS-5 is required for SAS-5/SAS-6 centriolar targeting ? Human PP2A is required for HsSAS-6 centriolar targeting and centriole formation  相似文献   

18.
Synaptonemal complex (SC) formation must be regulated to occur only between aligned pairs of homologous chromosomes, ultimately ensuring proper chromosome segregation in meiosis. Here we identify SYP-3, a coiled-coil protein that is required for assembly of the central region of the SC and for restricting its loading to occur only in an appropriate context, forming structures that bridge the axes of paired meiotic chromosomes in Caenorhabditis elegans. We find that inappropriate loading of central region proteins interferes with homolog pairing, likely by triggering a premature change in chromosome configuration during early prophase that terminates the search for homologs. As a result, syp-3 mutants lack chiasmata and exhibit increased chromosome mis-segregation. Altogether, our studies lead us to propose that SYP-3 regulates synapsis along chromosomes, contributing to meiotic progression in early prophase.  相似文献   

19.
The Mre11/Rad50/Nbs1 (MRN) complex is required for eukaryotic DNA double-strand break (DSB) repair and meiotic recombination. We cloned the Coprinus cinereus rad50 gene and showed that it corresponds to the complementation group previously named rad12, identified mutations in 15 rad50 alleles, and mapped two of the mutations onto molecular models of Rad50 structure. We found that C. cinereus rad50 and mre11 mutants arrest in meiosis and that this arrest is Spo11 dependent. In addition, some rad50 alleles form inducible, Spo11-dependent Rad51 foci and therefore must be forming meiotic DSBs. Thus, we think it likely that arrest in both mre11-1 and the collection of rad50 mutants is the result of unrepaired or improperly processed DSBs in the genome and that Rad50 and Mre11 are dispensable in C. cinereus for DSB formation, but required for appropriate DSB processing. We found that the ability of rad50 mutant strains to form Rad51 foci correlates with their ability to promote synaptonemal complex formation and with levels of stable meiotic pairing and that partial pairing, recombination initiation, and synapsis occur in the absence of wild-type Rad50 catalytic domains. Examination of single- and double-mutant strains showed that a spo11 mutation that prevents DSB formation enhances axial element (AE) formation for rad50-4, an allele predicted to encode a protein with intact hook region and hook-proximal coiled coils, but not for rad50-1, an allele predicted to encode a severely truncated protein, or for rad50-5, which encodes a protein whose hook-proximal coiled-coil region is disrupted. Therefore, Rad50 has an essential structural role in the formation of AEs, separate from the DSB-processing activity of the MRN complex.  相似文献   

20.
A universal feature of meiotic prophase is the pairing of homologous chromosomes, a fundamental prerequisite for the successful completion of all subsequent meiotic events. HIM-3 is a Caenorhabditis elegans meiosis-specific non-cohesin component of chromosome axes that is required for synapsis. Our characterization of new him-3 alleles reveals previously unknown functions for the protein. HIM-3 is required for the establishment of initial contacts between homologs, for the nuclear reorganization characteristic of early meiotic prophase, and for the coordination of these events with synaptonemal complex (SC) assembly. Despite the absence of homolog alignment, we find that recombination is initiated efficiently, indicating that initial pairing is not a prerequisite for early steps of the recombination pathway. Surprisingly, RAD-51-marked recombination intermediates disappear with apparent wild-type kinetics in him-3 null mutants in which homologs are spatially unavailable for recombination, raising the possibility that HIM-3's presence at chromosome axes inhibits the use of sister chromatids as templates for repair. We propose that HIM-3 is a molecular link between multiple landmark events of meiotic prophase; it is critical for establishing chromosome identity by configuring homologs to facilitate their recognition while simultaneously imposing structural constraints that later promote the formation of the crossover essential for proper segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号