首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined species richness separately for cladocerans and ostracods in 52 temporary pools in a small geographical area, relating species richness with habitat traits using multiple regressions. Habitat traits considered included surface area, water depth, permanence and sediment depth. Permanence was an important predictor of species richness of both cladocerans and ostracods. Additionally, variation in ostracod species richness was significantly explained by water depth (negative relationship) and sediment depth (positive relationship). Surface area was not a statistically significant factor in any of our analyses. The importance of permanence supports the hypothesis that extinction due to pool drying is a major driving force behind the structuring of microcrustacean communities in temporary pools.  相似文献   

2.
The aim of the study was to investigate particle and powder properties of various starch acetate powders, to study the effect of these properties on direct compression characteristics, and to evaluate the modification opportunity of physical properties for starch acetate powders by using various drying methods. At the end of the production phase of starch acetate, the slurry of starch acetate was dried using various techniques. Particle, powder, and tableting properties of end products were investigated. Particle size, circularity, surface texture, water content and specific surface area varied according to the particular drying method of choice. However, all powders were freely flowing. Bulk and tapped densities of powders varied in the range of 0.29 to 0.44 g/cm3 and 0.39 to 0.56 g/cm3, respectively. Compaction characteristics revealed that all powders were easily deformed under compression, having yield pressure values of less than 66 MPa according to Heckel analysis. All powders possessed a significant interparticulate bond-forming capacity during compaction. The tensile strength values of tablets varied between 10 and 18 MPa. In conclusion, physical properties of starch acetate could be affected by various drying techniques. A large specific surface area and water content above 4% were favorable properties by direct compression, especially for small, irregular, and rough particles.  相似文献   

3.
Summary Seedlings of Eucalyptus globulus growing in soil columns were subjected to a 24 day soil drying treatment. Water and solute potentials of both young expanding and fully expanded leaves declined under reduced soil water availability, while slightly higher turgor was sustained by the fully expanded leaves. Although leaf area of unwatered seedlings was smaller, the corresponding leaf dry weight was quite similar to that of well-watered seedlings. Soon after rewatering, leaf area of plants experiencing water shortage was comparable to that of well-watered plants. It seems that a difference in wall properties between juvenile and mature leaves allows for an effective pattern of water use by eucalypt plants growing in drying soil. Some stomatal opening is sustained and therefore, presumably, some carbon may be fixed, keeping the carbon balance of the whole plant positive, and allowing a continuous cell division despite the limited water supply. The highest root density of both well-watered and unwatered plants was found in the upper soil layers. However, root growth of unwatered seedlings was gradually increased in the deeper soil layers, where thicker root apices and higher soil water depletion rates per unit root length were recorded. As a consequence, root absorbing surface area was as large in unwatered plants as in well-watered plants.  相似文献   

4.
Leaf and root control of stomatal closure during drying in soybean   总被引:2,自引:0,他引:2  
The stomatal conductance of an illuminated 2.5 cm2 area of an intact soybean leaflet was the same whether the rest of the shoot was in light or darkness. This was true throughout soil drying cycles. Water potential of tissue immediately outside the illuminated area consistently decreased about 0.3 MPa upon illumination of the shoot. This erroneously suggested that stomatal conductance during soil drying did not respond to diurnal reductions in leaf water potential, but was controlled by root or soil water status. Tests showed that the water potential of tissue in the illuminated area did not change in the steady-state upon illumination of the rest of the shoot. Water potentials of shaded sections of leaves were not different from predawn water potentials, and were higher than leaf xylem pressure potentials as determined with a pressure chamber. These steep local gradients of leaf water potential suggest that there is minimal interchange of water among xylem elements leading from roots to different sections of leaves. The relationship between stomatal conductance and leaf water potential was the same whether leaf water potential was reduced by soil drying, application of polyethylene glycol (PEG) to the root system, lowering root temperature, or leaf excision. In the root cooling experiment, there was no soil drying, and with leaf excision, there was no root drying. The similarity of stomatal responses to leaf water potential in all cases strongly suggests control of conductance by a signal produced by local leaf water potential rather than root or soil water status in these experiments.  相似文献   

5.
武德智  楼波  钟世青 《生态科学》2010,29(2):156-160
采用4种不同温度(30℃、70℃、102℃、130℃)及4种不同体表比(1.62cm2·g-1、2.16cm2·g-1、3.24cm2·g-1、6.48cm2·g-1)的污泥样品,对比研究了污水污泥和造纸污泥的干燥特性。结果表明:恒温干燥的温度越高,样品的比表面积越大,干燥时间越短。污泥失水率在10%之前,处于快速干燥阶段;污泥失水率在10%~60%之间,处于恒速干燥阶段;污泥失水率在大于60%时,处于降速干燥阶段。各阶段,污水污泥的失水速率比造纸污泥小0.01%·s-1左右。  相似文献   

6.
In order to better understand nanostructured fiber networks, effects from high specific surface area of nanofibers are important to explore. For cellulose networks, this has so far only been achieved in nonfibrous regenerated cellulose aerogels. Here, nanofibrillated cellulose (NFC) is used to prepare high surface area nanopaper structures, and the mechanical properties are measured in tensile tests. The water in NFC hydrogels is exchanged to liquid CO2, supercritical CO2, and tert-butanol, followed by evaporation, supercritical drying, and sublimation, respectively. The porosity range is 40-86%. The nanofiber network structure in nanopaper is characterized by FE-SEM and nitrogen adsorption, and specific surface area is determined. High-porosity TEMPO-oxidized NFC nanopaper (56% porosity) prepared by critical point drying has a specific surface area as high as 482 m(2) g(-1). The mechanical properties of this nanopaper structure are better than for many thermoplastics, but at a significantly lower density of only 640 kg m(-3). The modulus is 1.4 GPa, tensile strength 84 MPa, and strain-to-failure 17%. Compared with water-dried nanopaper, the material is softer with substantiallly different deformation behavior.  相似文献   

7.
In natural environments, drought often occurs in surface soil while water is available for plant uptake deeper in the soil profile. The objective of the study was to examine the involvement of antioxidant metabolism and lipid peroxidation in the responses of two cool-season grasses to surface soil drying. Kentucky bluegrass (Poa pratensis L) and tall fescue (Festuca arundinacea Schreb.) were grown in split tubes, consisting of two sections (each 10 cm in diameter and 20 cm long). Grasses were subjected to three soil moisture regimes: (a) well-watered control: whole soil profile was watered; (b) surface drying: surface 20 cm of soil was dried by withholding irrigation and the lower 20 cm of soil was watered; (c) full drying: whole soil profile was dried. Surface drying had no effects on relative water content (RWC) and chlorophyll content (Chl) for both grasses and only slightly reduced shoot growth for tall fescue. Superoxide dismutase (SOD) activity increased, while catalase (CAT) and peroxidase (POD) activities remained unchanged during most periods of surface drying. Malondialdehyde (MDA) content was unaffected by surface drying for tall fescue, but increased initially and then decreased to the control level for Kentucky bluegrass. Under full drying, RWC, Chl content, and shoot dry weight decreased, but MDA content increased in both grasses; SOD and POD activities initially increased transiently and then decreased; CAT remained unchanged for 25 days and then decreased. These results suggested that both Kentucky bluegrass and tall fescue were capable of surviving surface soil drying. This capability could be related to increases in antioxidant activities, particularly SOD and CAT. However, full drying suppressed antioxidant activities and induced lipid peroxidation.  相似文献   

8.
Migrating waterbirds moving between upper and lower latitudinal breeding and wintering grounds rely on a limited network of endorheic lakes and wetlands when crossing arid continental interiors. Recent drying of global endorheic water stores raises concerns over deteriorating migratory pathways, yet few studies have considered these effects at the scale of continental flyways. Here, we investigate the resiliency of waterbird migration networks across western North America by reconstructing long‐term patterns (1984–2018) of terminal lake and wetland surface water area in 26 endorheic watersheds. Findings were partitioned regionally by snowmelt‐ and monsoon‐driven hydrologies and combined with climate and human water‐use data to determine their importance in predicting surface water trends. Nonlinear patterns of lake and wetland drying were apparent along latitudinal flyway gradients. Pervasive surface water declines were prevalent in northern snowmelt watersheds (lakes ?27%, wetlands ?47%) while largely stable in monsoonal watersheds to the south (lakes ?13%, wetlands +8%). Monsoonal watersheds represented a smaller proportion of total lake and wetland area, but their distribution and frequency of change within highly arid regions of the continental flyway increased their value to migratory waterbirds. Irrigated agriculture and increasing evaporative demands were the most important drivers of surface water declines. Underlying agricultural and wetland relationships however were more complex. Approximately 7% of irrigated lands linked to flood irrigation and water storage practices supported 61% of all wetland inundation in snowmelt watersheds. In monsoonal watersheds, small earthen dams, meant to capture surface runoff for livestock watering, were a major component of wetland resources (67%) that supported networks of isolated wetlands surrounding endorheic lakes. Ecological trends and human impacts identified herein underscore the importance of assessing flyway‐scale change as our model depictions likely reflect new and emerging bottlenecks to continental migration.  相似文献   

9.
Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field.  相似文献   

10.
自上世纪 60 年代以来, 由于塔里木河上中游水资源的不合理开发利用, 导致河流下游及台特玛湖干涸, 干涸的湖底荒漠化快速发展。生态输水后, 湖泊面积恢复并扩大, 生态环境改善, 荒漠化逆转。根据对研究区域多次实地考察、结合前人研究的成果资料、借助GIS(Geographic Information System)和 RS(Remote Sensing)技术对1990-2018年台特玛湖湖区水域面积变化及其对生态环境的影响进行了分析。结果表明: 生态输水后台特玛湖水域面积明显扩大, 生态环境明显改善。深入分析引起台特玛湖区域生态环境变化的原因并进行敏感性评价, 最终提出科学合理的台特玛湖区域生态环境综合治理方案, 为塔里木河下游环境保护管理决策提供科学依据和技术支撑。  相似文献   

11.
A study quantifying the physiological threshhold at which Spartina alterniflora plants are able to tolerate the interactive effects of salinity and soil drying was conducted in a climate controlled greenhouse. The experiment consisted of two levels of salinity (3-5 ppt, L and 35-38 ppt, H) as well as four dynamic water levels: flooding (water level maintained 3-5 cm above the soil surface at high tide and 10 cm below the soil surface at low tide for entire study duration, F), 8-day drought (water level maintained at least 20 cm below the soil surface at high tide for 8 days then flooded, 8 days), 16-day drought (water level maintained at least 20 cm below the soil surface at high tide for 16 days then flooded, 16 days), and 24-day drought (water level maintained at least 20 cm below the soil surface at high tide for 24 days then flooded, 24 days). Plant gas exchange and growth responses were measured along with soil conditions of redox potential and water potential. Significant decreases were seen in plant gas exchange and growth in response to increases in salinity and soil drying. Survival was 100% for all flooded treatments while increased salinity combined with soil drying decreased survival to 86% in both low salt/24-day drought plants (LD24) and high salt/16-day drought plants (HD16). The lowest survival rate was seen in the high salt/24-day drought treatment (HD24) at 29%. Therefore, it appears that the critical time for recovery from the combined effects of increased salinity and soil drying may greatly diminish after two weeks from the onset of stress conditions. Consequently, if salinity continues to increase along the MRDP, marshes dominated by S. alterniflora may be more susceptible to short-term drought and likewise large-scale marsh browning.  相似文献   

12.
The kinetically controlled condensation of Z-Gly-Trp-OMe and H-Met-OEt catalyzed by α-chymo-trypsin in organic media is reported. The influence of thermodynamic water activity and the support material used to adsorb α-chymotrypsin, on both the product yield and enzymatic activity was investigated. Polyamide based materials were the best support at low water activity rendering the highest reaction rates and yields. The activity of the adsorbed enzyme at low water activities depends on both the accessible surface area and the hydrophobicity of the support. Polyamide had both adequate hydrophilicity and high surface area yielding the best results. Polypropylene based supports were strongly hydrophobic and, although they presented a high surface area, the enzymatic activity was much lower. The solvents used to carry out the synthesis were acetonitrile and ethyl acetate. No significant differences were observed on the performance of the reaction in either solvent. The tripeptide selected is a fragment of the cholecystokinin C-terminal octapeptide (CCK-8), a biological active peptide involved in the control of gastrointestinal function.  相似文献   

13.
To prove the theory that meteorological factors, especially winter drying events, usually affect trees by inducing water and energy imbalance, systematic studies of winter drying damage to Ligustrum lucidum trees in Shandong, China in 2018 were performed by analyzing digital and thermal images of the trees and integrating the results with meteorological and geostatistical analysis and the results of osmotic stress tests in saturated sucrose solution. The results indicate that sap water can not only be transported upward with assistance from cohesion-tension force, but also can be turned back from the terminals of leaves and branches under the inverse pulling force. Under extreme conditions during winter drying events, the breakage of sap water column and reduction of the terminal tissues or organs occur. Similar “∧”-shaped leaf symptoms can also be induced by freezing, summer drought and osmotic stress. The results support the theory of transpiration surface reduction characterized by unity of freezing and drying. Therefore, severe damage to juvenile plants of Ligustrum lucidum under these conditions may be caused by the combined effects of low temperature, drought, strong irradiation and saline soil as well as by the sensitive status of the plants.  相似文献   

14.
Huang  Bingru 《Plant and Soil》1999,208(2):179-186
Effects of localized soil drought stress on water relations, root growth, and nutrient uptake were examined in drought tolerant ‘Prairie’ buffalograss [Buchloe dactyloides (Nutt.) Engelm.] and sensitive ‘Meyer’ zoysiagrass (Zoysia japonica Steud.). Grasses were grown in small rhizotrons in a greenhouse and subjected to three soil moisture regimes: (1) watering the entire 80-cm soil profile (well-watered control); (2) drying 0–40 cm soil and watering the lower 40 cm (partially dried); (3) and drying the entire soil profile (fully dried). Drying the 0–40 cm soil for 28 days had no effect on leaf water potential (Ψ leaf ) in Prairie buffalograss compared to the well-watered control but reduced that in Meyer zoysiagrass. Root elongation rate was greater for Prairie buffalograss than Meyer zoysiagrass under well-watered or fully dried conditions. Rooting depth increased with surface soil drying; with Prairie buffalograss having a larger proportion of roots in the lower 40 cm than Meyer zoysiagrass. The higher rates of water uptake in the deeper soil profile in the partially dried compared to the well-watered treatment and by Prairie buffalograss compared to Meyer zoysiagrass could be due to differences in root distribution. Root 15N uptake for Prairie buffalograss was higher in 0–20 cm drying soil in the partially dried treatment than in the fully dried treatment. Diurnal fluctuations in soil water content in the upper 20 cm of soil when the lower 40 cm were well-watered indicated water efflux from the deeper roots to the drying surface soil. This could help sustain root growth, maintain nutrient uptake in the upper drying soil layer, and prolong turfgrass growth under localized drying conditions, especially for the deep-rooted Prairie buffalograss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Trehalose is believed to offer desiccation protection to mammalian cells by forming stable glassy matrices. The goal of the current study was to explore the desiccation kinetics of thin films of trehalose-water solution under forced and natural convective conditions and to investigate the thermophysical state of mammalian cells at the bottom of the thin film. We developed a finite difference model based on the mass and energy conservation equations coupled to the water transport model from the cells. The boundary conditions were obtained from correlations or experimental measurements and the Gordon-Taylor equation was used to predict the glass transition temperature at every location. Results indicated that there are three distinct regimes for drying for both forced and natural convection, characterized by the slope of the moisture content plot as a function of time. Our results also indicate that the surface of the solution reached the glassy state in less than 10 min for the Reynolds (forced) numbers explored and approximately 30 min for some Rayleigh (natural convective) numbers; however, significant water was trapped at this instant. Larger drying force hastened quicker glass formation but trapped more water. The numerical model was capable of predicting the drying kinetics for the dilute region accurately, but deviated while predicting the other regimes. Based on these experimental validations of the model, the osmotic response of different cells located at the bottom of the solution with orders of magnitude difference in their membrane permeability (Lp) was predicted. The results suggested that extracellular glass formed around cells at the bottom of a trehalose-water solution by the propagation of glass into the solution; however it takes more than an order of magnitude time (approximately 7 min to >100 min for forced convective drying) to remove sufficient water to form glass around cells from the time when the first surface glass is formed. This is attributed to low diffusivity of water through the glass. In addition, the water transport from the glassy matrix could be either diffusion or Lp limited. For diffusion-limited transport, lowering the film thickness at the beginning of drying by half almost lowers the drying time by an order of magnitude. In summary, the optimal design of convective desiccation protocols requires accounting for the size of the cell, their membrane permeability (Lp) and the starting thickness of the solution.  相似文献   

16.
Five different aluminas, a silica and a zirconia support were used to adsorb lipase (E.C. 3.1.1.3) from Rhizomucor miehei. The activity of the immobilised lipase was measured by esterification of dodecanol and decanoic acid in hexane. The immobilised lipase and the organic phase were pre-equilibrated separately to known water activities before mixing them to commence the reactions. The aluminas, which varied in pore sizes and surface areas, adsorbed similar amounts of enzyme. However, the esterification activities varied about 10-fold, increasing with increasing surface area. The silica and zirconia supports adsorbed about half as much lipase as the aluminas. The esterification reaction rates per unit quantity of enzyme adsorbed were compared with those for aluminas with similar surface areas; this specific rate was about 2 times higher for the zirconia, but the difference with silica was only small. There was no clear correlation between the esterification rates at fixed water activity and the amount of water adsorbed by the support used.  相似文献   

17.
Water retention on the leaf surface can be maladaptive to the plant because it increases the colonization of epiphylls and interferes with the physiologic processes of the leaf, diminishing the photosynthetic capacity. To test if leaf driptips facilitate leaf drying after rainfall in a tropical rain forest of Costa Rica, we (1) experimentally measured the capacity to retain water on leaf surfaces of 30 plant species before and after driptip removal, and (2) analyzed the development of driptips along forest strata. We expected leaf driptips to be less developed in the upper strata due to the environmental conditions of the canopy (i.e., high solar radiation, strong winds and low relative humidity), which favor the natural drying of leaves. The presence of driptips increased 100% the water run off capacity of leaves in all the analyzed species. Also, the development of leaf driptips was smaller in canopy species than in understory species. Additionally, they became less developed in canopy species as trees increased in height. These results support the hypothesis that the adaptive role of driptips is to facilitate the drying of leaf surfaces.  相似文献   

18.
Spatiotemporal dynamic information on surface water area and level is a prerequisite for effective wetland conservation and management. However, such information is either unavailable or difficult to obtain. In this study, for the first time, we leverage Landsat imagery, ICESat-2 and airborne LiDAR data to develop time series of water body dynamics over the last 35 years (1987–2021) using machine learning method on a cloud computing platform for lakes identified as international importance in the Western District Lakes Ramsar site in Victoria, Australia. Our results reveal distinct seasonal (dry and wet) variation patterns and long-term changes in trends of lake water areas and levels in response to seasonal rainfall variations and regional climate changes for the periods of before, during and after the Millennium Drought when southeast Australia experienced unprecedented dry conditions. Lake water bodies have not recovered to the status of pre-Millennium Drought, and many permanent Ramsar-listed lakes in the region have become to ephemeral lakes due to climate change. The outcome of this study provides a baseline to help understand the historical and ongoing status of the Ramsar-listed lakes in a warming and drying climate in support of the development of strategic plan to implement international obligations for wetlands protection under the Ramsar Convention.  相似文献   

19.
This study aims to investigate the effect of the ice nucleation temperature on the primary drying process using an ice fog technique for temperature-controlled nucleation. In order to facilitate scale up of the freeze-drying process, this research seeks to find a correlation of the product resistance and the degree of supercooling with the specific surface area of the product. Freeze-drying experiments were performed using 5% wt/vol solutions of sucrose, dextran, hydroxyethyl starch (HES), and mannitol. Temperature-controlled nucleation was achieved using the ice fog technique where cold nitrogen gas was introduced into the chamber to form an “ice fog”, there-by facilitating nucleation of samples at the temperature of interest. Manometric temperature measurement (MTM) was used during primary drying to evaluate the product resistance as a function of cake thickness. Specific surface areas (SSA) of the freeze-dried cakes were determined. The ice fog technique was refined to successfully control the ice nucleation temperature of solutions within 1°C. A significant increase in product resistance was produced by a decrease in nucleation temperature. The SSA was found to increase with decreasing nucleation temperature, and the product resistance increased with increasing SSA. The ice fog technique can be refined into a viable method for nucleation temperature control. The SSA of the product correlates well with the degree of supercooling and with the resistance of the product to mass transfer (ie, flow of water vapor through the dry layer). Using this correlation and SSA measurements, one could predict scaleup drying differences and accordingly alter the freeze-drying process so as to bring about equivalence of product temperature history during lyophilization.  相似文献   

20.
The structure of melanin extracted from the ink sac of the cuttlefish Sepia officinalis was examined for different methods of isolation and purification of the pigment. Scanning electron microscopy (SEM) images of Sepia eumelanin prepared by different procedures establish that multi-microm-sized aggregates reported by previous workers are generated by their sample preparation, and that the dominant constituents of Sepia melanin are approximately 150 nm spherical granules. Brunauer-Emmett-Teller (BET) measurements reveal that Sepia eumelanin from Sigma (prepared by spray drying the pigment) has a surface area of 14.3 m2/g. Pigment extracted directly from the fresh ink sac and then freeze-dried has a surface area of 21.5 m2/g, while CO2-supercritically dried has a surface area of 37.5 m2/g. This is consistent with SEM images showing that the process of freeze-drying produces aggregates, but to a lesser extent than spray drying. Supercritical drying of the sample produces suspensions of the individual approximately 150 nm granule, which is more reflective of the natural pigment. Brunauer-Emmett-Teller surface area analysis and Barrett-Joyner-Halenda (BJH) pore volume analysis indicate that the surface of the granules is not smooth and the interior of the granules is not porous, but rather the aggregates of granules are porous. Ultra-high resolution SEM and atomic force microscopy (AFM) images show the granules are easily deformed and are comprised of smaller constituents. De-aggregation of the granules by sonication and ultra-filtration reveal a range of structures depending on the pore size of the membrane used. The implications of these results on quantifying photochemical properties and kinetic reaction rate constants of melanin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号