首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used lovastatin, a specific inhibitor of HMG-CoA reductase, to study the role of cholesterol synthesis in regulation of both bile acid synthesis, measured by release of 14CO2 from [26-14C]cholesterol, and biliary cholesterol secretion, measured by standard marked perfusion techniques, in humans. Six volunteers were studied in each of four periods: a) control; b) 6-10 hours after a single 40 mg oral dose of lovastatin to study acute effects; c) after 5-6 weeks of lovastatin 40 mg orally twice a day to study steady-state effects; and d) 24 h after cessation of chronic lovastatin. Mean bile acid synthesis fell to 69% of control (P less than 0.01) after single-dose lovastatin and remained at 83% of control after 5-6 weeks on lovastatin (P less than 0.05). After withdrawal of lovastatin, mean bile acid synthesis was 88% of control (NS). Mean biliary cholesterol secretion did not change after single-dose lovastatin (103% of control), but fell to 81% of control during chronic lovastatin treatment (P less than 0.05). After withdrawal of lovastatin, mean cholesterol secretion remained at 80% of control (P less than 0.05). These data suggest that in humans cholesterol synthesis is an immediate regulator of bile acid synthesis. Cholesterol synthesis also regulates biliary cholesterol secretion, but the effect is not immediate and therefore may be indirect.  相似文献   

2.
Glycolithocholic acid and its sulfated derivative are major metabolites of the secondary bile acid lithocholic acid in man. Both compounds are known to induce cholestasis in experimental animals. We compared the effects of these endogenous hepatotoxins on bile production and biliary lipid composition in rats with chronic biliary drainage. The compounds were administered enterally at relatively low rates (5-50% of the rats' endogenous bile acid secretion in these experiments) to simulate enterohepatic circulation. Both compounds were substantially secreted into bile (more than 90% of dose); sulfated glycolithocholic acid unchanged and glycolithocholic acid after hepatic hydroxylation predominantly in the form of glyco-beta-muricholic acid (cf. Kuipers et al. (1986) Am. J. Physiol. 251, G189-G194). Neither glycolithocholic acid nor its sulfated derivative affected the biliary excretion of endogenous bile acids or bile flow in these experiments. In spite of this, phospholipid and cholesterol secretion were significantly reduced by sulfated glycolithocholic acid but were not altered by glycolithocholic acid. Phospholipid and cholesterol secretion rapidly decreased to 25 and 50% of their initial values, respectively, at biliary output rates of sulfated glycolithocholic acid up to 2 mumol/h, and did not further decrease when this output was increased to 6 mumol/h. Small unilamellar liposomes consisting of cholesterol, [Me-14C]choline-labeled phosphatidylcholine, phosphatidylserine and [3H]cholesteryl oleate in a 5:4:1:0.1 molar ratio were employed to label intrahepatic lipid pools. Administration of sulfated glycolithocholic acid slightly reduced bile acid synthesis from [3H]cholesteryl oleate, but significantly reduced the biliary secretion of [14C]phospholipid. Glycolithocholic acid did not affect the hepatic processing of liposomal lipids. It is concluded that sulfated glycolithocholic acid at low doses causes the uncoupling of biliary lipid secretion from that of bile acids, which might represent in initiating event in sulfated glycolithocholic acid hepatotoxicity.  相似文献   

3.
The biological effects of bile acids depend largely upon their molecular structure. When bile acid uptake exceeds the maximal biliary secretory rate (SRm) cholestasis occurs. In order to characterize the influence of bile acid structure on its cholestatic potency we systematically studied SRm, maximal bile flow, maximal and cumulative phospholipid and cholesterol secretion with different taurine-conjugated tri-, di- and keto bile acids (Table I) in the isolated perfused rat liver. Bile acids with a high critical micellar concentration (CMC) promoted the greatest bile flow; a positive non-linear correlation between CMC and maximal bile flow was found. 3 alpha-Hydroxylated bile acids with a hydroxyl group in 6 alpha and/or 7 beta position and lacking a 12 alpha hydroxy group had a high SRm. SRm was not related to CMC or maximal bile flow, respectively. Phospholipids and cholesterol were secreted in a nearly fixed ratio of 12:1; a strong linear relationship could be observed. Cumulative phospholipid secretion over 48 min was significantly lower for non and poor micelle forming bile acids (TDHC and TUC) than for those with comparatively low CMC values (TUDC, TC, THC, THDC, TCDC) (70-140 vs. 210-450 nmol/g liver). At SRm all bile acids with good micelle forming properties showed a similar cumulative biliary lipid output. However, when biliary lipid output was related to 1 mumol bile acid secreted bile acids with a low SRm induced the highest lipid secretion (TCDC, TC). These data (1) demonstrate that a 6 alpha and/or a 7 beta hydroxy group on the steroid nucleus reduce cholestatic potency if the 12 alpha hydroxy group is absent, (2) suggest that in the case of micelle forming bile acids the total amount of phospholipids secreted in bile (depletion of cellular phospholipids) is associated with the occurrence of cholestasis whereby bile acids with a low SRm deplete the cellular phospholipid content at much lower bile acid concentrations than those with a higher SRm and (3) imply that bile acids with non and poor micelle forming properties (TDHC, TUC) presumably do not cause cholestasis (solely) by depletion of cellular phospholipids.  相似文献   

4.
The aim of the present study was to determine whether bile acid feeding to rats can reverse ethinyl estradiol-induced cholestasis. Animals received ethinyl estradiol (2 mg/kg/day) for 6 days or were coinfused with estrogen plus various bile acids (60 mg/kg/day). Cholestasis could be significantly prevented by tauroursodeoxycholic acid, was partly corrected by ursodeoxycholic acid, and was unchanged by chenodeoxycholic acid. Total bile salt secretion was increased in every group. The secretion of the major primary bile acids (cholic acid and beta-muricholic acid) was restored to a large extent in rats supplemented with tauroursodeoxycholate but not in chenodeoxycholate-fed rats. In the former group, the canalicular transport of taurocholate and the bile salt pool size were identical with those of control rats. The hydrophilic-hydrophobic balance of the administered bile salt species appears to be an essential factor in the restoration of bile secretion, the more hydrophilic bile salt having the more hepatoprotective effect.  相似文献   

5.
在近些年的研究中,对于胆汁酸的认识越来越深入。许多病理生理过程中存在胆汁酸代谢变化,胆汁酸已成为多种疾病的新型治疗靶点。其中胆汁酸与肝脏脂代谢密切相关,通过激活法尼酯X受体和G蛋白偶联胆汁酸受体,调节脂代谢、糖代谢、炎症反应等,影响多种代谢疾病进展。本文旨从胆汁酸代谢、肝脏代谢紊乱时的胆汁酸变化、胆汁酸紊乱对肝脏代谢功能的影响等方面对胆汁酸与肝脏脂代谢的研究现状进行综述。  相似文献   

6.
Extensive studies in animal models indicate that subclinical ascorbic acid deficiency impairs the conversion of cholesterol to bile acid, elevates plasma cholesterol levels, and predisposes to development of cholesterol cholelithiasis. The present study was designed to see if this is also true in man. Five normal volunteers were hospitalized in a metabolic ward and placed on a controlled diet containing 3-4 mg of ascorbic acid each day. Ascorbic acid supplementation was given as follows: control period I (days 1-33), 75 mg/day; deficient period (days 34-96), 0 mg/day; and repletion period (days 97-101), 1000 mg/day. In addition, three of the subjects were studied during a second control period (days 102-139) during which they were given 75 mg/day of ascorbic acid. Ascorbate levels at the end of both control periods were 0.87-1.34 mg/dl in plasma and 19.4-29.5 micrograms/10(8) cells in leukocytes. At the end of the deficient period these levels were 0.09-0.15 mg/dl in plasma and 6.2-10.0 micrograms/10(8) cells in leukocytes, levels approaching those seen in scurvy. There was no effect of ascorbic acid deficiency on plasma cholesterol and triglycerides; plasma cholesterol in high, very low, and low density lipoprotein fractions; biliary lipid composition and saturation index of gallbladder bile; synthesis, fractional turnover, or pool size of either cholic or chenodeoxycholic acids; output of fecal acid or neutral sterols; and fecal sterol balance. Total bile acid pool size calculated by the one-sample technique was reduced 11% in the deficient period compared to control period I (P less than 0.005), and increased to 98.7% of the baseline levels in control period II. However, total bile acid pool calculated by the Lindstedt method did not change during deficiency. These data demonstrate that short-term subclinical ascorbic acid deficiency near the scorbutic range has no significant effect on bile acid and cholesterol metabolism in man.  相似文献   

7.
In the last 25 years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled ‘core’ pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

8.
We studied the effect of a bean diet on biliary lipid secretion, serum cholesterol concentration, and hepatic cholesterol metabolism in the rat. Rats fed a bean diet for 10-12 days had increased biliary cholesterol output and molar percentage by 300% and 200%, respectively, compared to rats fed an isocaloric and isoprotein casein diet. Biliary phospholipid output increased 180%. Bile flow and biliary bile salt output remained in the normal range. Total serum and VLDL cholesterol concentration significantly decreased 27% and 50%, respectively, in the rats fed the bean diet. Hepatic cholesterogenesis was increased 170% in the bean-fed animals. The relative contribution of newly synthesized hepatic cholesterol to total biliary cholesterol increased 200%, and that of endogenous origin only 50%. These results suggested that newly synthesized hepatic cholesterol was preferentially channelled to the biliary cholesterol secretory pathway in bean-fed rats. Although hepatic cholesteryl ester concentration increased 240%, the incorporation of [14C]oleate into hepatic cholesteryl esters was significantly decreased by 30% in isolated hepatocytes of bean-fed animals. These results were consistent with the possibility that the availability of hepatic free cholesterol for biliary secretion was increased in the bean-fed animals. This study demonstrates that bean intake has a profound effect on the metabolic channelling and compartmentalization of hepatic cholesterol, resulting in a significant decrease in total serum and very low density lipoprotein cholesterol concentrations and a high biliary cholesterol output.  相似文献   

9.
Fourteen castrated male Large White pigs, weighing 42.5 +/- 1.0 kg, were fitted with biliary and duodenal fistulae for biliary secretion studies. Furthermore, catheters were placed in a carotid artery for blood sampling and in a jugular vein for peptide infusion. Bile was automatically restituted to the animals and continuously sampled for analysis on experimental days. Following an 8 day recovery period, infusion studies were performed after an overnight fast. After a 30 min basal period, sustained biliary flow and bile acid output were obtained and maintained throughout the assay with secretin (36 pmol/kg/h) and CCK-8 (600 pmol/kg/h) infusion. Then, 200, 400, 600, 800 or 1200 pmol/kg/h of porcine pancreatic polypeptide (PP) were infused for 60 min. Secretin plus CCK infusion was continued for 1 h after PP infusion was stopped. Each dose of PP was given on a separate day. Biliary flow was not affected by PP except for the dose of 400 pmol/kg/h. On the contrary, bile acid concentration and output decreased with the lowest dose of PP (200 pmol/kg/h). As soon as the first dose of PP was infused, bile acid concentration and output fell to about 60% of values obtained with secretin plus CCK. Plasma levels of PP were below or similar to postprandial values for 200, 400 and 600 pmol/kg/h and they were significantly larger with 800 and 1200 pmol/kg/h. Bile acid concentration and output did not return to values obtained with secretin plus CCK infusion after cessation of PP infusion. In conclusion, porcine PP given in physiological doses to the pig decreases bile acid output whereas biliary flow remains unaffected.  相似文献   

10.
11.
12.
Both estrogen and dietary n-3 polyunsaturated fatty acids are known to be hypocholesterolemic, but appear to exert their effects by different mechanisms. In this study, the interaction between dietary fish oil (rich in n-3 polyunsaturated fatty acids) and estrogen in the regulation of hepatic cholesterol metabolism and biliary lipid secretion in rats was studied. Rats fed a low fat or a fish oil-supplemented diet for 21 days were injected with 17alpha-ethinyl estradiol (5 mg/kg body weight) or the vehicle only (control rats) once per day for 3 consecutive days. Estrogen-treatment led to a marked reduction in plasma cholesterol levels in fish oil-fed rats, which was greater than that observed with either estrogen or dietary fish oil alone. The expression of mRNA for cholesterol 7alpha-hydroxylase was decreased by estrogen in rats fed a low fat or a fish oil-supplemented diet, while the output of cholesterol (micromol/h/kg b.wt.) in the bile was unchanged in both groups. Cholesterol levels in the liver were increased by estrogen in rats given either diet, but there was a significant shift from cholesterol esterification to cholesteryl ester hydrolysis only in the fish oil-fed animals. Estrogen increased the concentration of cholesterol (micromol/ml) in the bile in rats fed the fish oil, but not the low fat diet. However, the cholesterol saturation index was unaffected. The output and concentration of total bile acid was also unaffected, but changes in the distribution of the individual bile acids were observed with estrogen treatment in both low fat and fish oil-fed groups. These results show that interaction between estrogen-treatment and dietary n-3 polyunsaturated fatty acids causes changes in hepatic cholesterol metabolism and biliary lipid secretion in rats, but does not increase the excretion of cholesterol from the body.  相似文献   

13.
Ratios of cholestanol, campesterol, and sitosterol to cholesterol in serum are known to reflect cholesterol absorption efficiency. Here, a possible link between these ratios and biliary secretion rates of cholesterol was investigated. Biliary lipid secretion rates and serum sterols were determined in 13 patients with gallstones. Seven were treated with ursodeoxycholic acid (UDCA) (1,000 mg/d). Serum cholesterol and non-cholesterol sterols were also measured in a cross over study in 20 healthy volunteers, who received either placebo or UDCA (750 mg/d). Biliary cholesterol secretion was significantly lower, whereas the non-cholesterol sterols and their ratio to cholesterol were higher in patients with gallstones treated with UDCA. A highly significant negative linear correlation between the ratios of non-cholesterol sterols to cholesterol and biliary cholesterol secretion was observed. In volunteers, administration of UDCA for 4 weeks was followed by a significant increase in non-cholesterol sterols and their ratios. Even 4 weeks after discontinuing UDCA administration, campesterol and sitosterol were still significantly higher than pretreatment levels, which was also true for the campesterol-cholesterol ratio after 8 weeks. The results suggest that the ratios of cholestanol, campesterol, and sitosterol to cholesterol can be used as indicators of changes in biliary cholesterol secretion rates.  相似文献   

14.
Male adult Wistar rats received daily, at 9 a.m. and 5 p.m., 10 micrograms of Zn-protamine glucagon for 21 days by subcutaneous injections. The blood glucose level was not significantly modified. Cholesterol and triacylglycerol levels were decreased by 40 and 70% in plasma but not in the liver. The rates of cholesterol turnover processes were determined in vivo with an isotope balance method. Internal secretion of cholesterol (13.8 +/- 0.5 mg/day per rat in control rats and 22.4 +/- 0.9 mg/day per rat in glucagon-treated rats) and cholesterol transformation into bile acids were strikingly increased by chronic administration of glucagon. Biliary secretion rates of bile acids measured by a wash-out method were increased by 139%, while the intestinal bile acid pool was not changed. The enterohepatic cycle number was increased from five per day in control rats to nine per day in glucagon-treated rats. An increased turnover rate of the exchangeable cholesterol would explain the hypocholesterolemic effect of glucagon.  相似文献   

15.
Techniques were developed in young growing pigs to simultaneously collect and reinfuse bile. Silastic cannulae were designed and surgically implanted in the common bile duct and the duodenum. Direct sampling of the hepatic bile was achieved by bypassing the gallbladder. The techniques allowed for steady-state studies of hepatic function to be conducted in conscious swine in two different studies. Pigs, thus surgically modified, can serve as an appropriate model for physiologic, pharmacologic, and nutritional research that involves bile sampling.  相似文献   

16.
Biliary secretion of bile acid glucuronides was studied in control rats and in rats with a congenital defect in hepatobiliary transport of organic anions (GY rats). In control animals, hepatobiliary transport of [3H]lithocholic acid 3-O-glucuronide and [3H]cholic acid 3-O-glucuronide was efficient (greater than 95% in 1 h) and comparable to that of [14C]taurocholic acid. Secretion of both glucuronides was impaired in GY rats (24% and 71% at 1 h), whereas that of taurocholate was similar to control values. However, recovery of the glucuronides in bile was nearly complete within 24 h; virtually no radioactivity was found in urine. In control rats, biliary secretion of lithocholic acid 3-O-glucuronide, but not that of cholic acid 3-O-glucuronide or taurocholate, could be delayed by simultaneous infusion of dibromosulphthalein. In mutant rats, dibromosulphthalein infusion was also able to inhibit secretion of cholic acid 3-O-glucuronide. [3H]Hydroxyetianic acid, a C20 short-chain bile acid, was secreted by control rats as a mixture of 20% carboxyl-linked and 80% hydroxyl-linked (3-O-)glucuronide; secretion was very efficient (99% in 1 h). In GY rats, secretion was drastically impaired (16% at 1 h and 74% over a 24-h period). Initially, the mutant secreted more carboxyl- than hydroxyl-linked glucuronide, but the ratio reached that of control animals after 24 h. The rates of formation of both types of hydroxyetianic acid glucuronide by hepatic microsomes from mutant rats were similar or even slightly higher than those of control microsomes. These findings indicate that bile acid 3-O-glucuronides, but probably not carboxyl-linked glucuronides, are secreted into bile by a transport system shared with organic anions such as conjugated bilirubin and dibromosulphthalein, but different from that for amino acid-conjugated bile acids.  相似文献   

17.
18.
Hydrophobic bile acids, which are known to be cytotoxic for hepatocytes, are retained in high amount in the liver during cholestasis. Thus, we have investigated the effects of bile acids with various hydrophobicities on biliary epithelial cells. Biliary epithelial cells were cultured in the presence of tauroursodeoxycholate (TUDC), taurocholate (TC), taurodeoxycholate (TDC), taurochenodeoxycholate (TCDC), or taurolithocholate (TLC). Cell proliferation, viability, apoptosis and secretion of monocyte chemotactic protein-1 (MCP-1) and of interleukin-6 (IL-6) were studied. Cell proliferation was increased by TDC, and markedly decreased by TLC in a dose dependent manner (50-500 microM). Cell viability was significantly decreased by TLC and TCDC at 500 microM. TLC, TDC and TCDC induced apoptosis at high concentrations. The secretion of MCP-1 and IL-6 was markedly stimulated by TC. TUDC had no significant effect on any parameter. These findings demonstrate that hydrophobic bile acids were cytotoxic and induced apoptosis of biliary epithelial cells. Furthermore, TC, a major biliary acid in human bile, stimulated secretion of cytokines involved in the inflammatory and fibrotic processes occurring during cholestatic liver diseases.  相似文献   

19.
The objective of this study was to examine the effect of glucocorticoid treatment in early neonatal life on plasma cholesterol and hepatic cholesterol 7 alpha-hydroxylase (CH-7A), the rate-limiting enzyme of bile acid biosynthesis from cholesterol, measured at weaning (Postnatal Day 20). Neonatal rat pups were injected subcutaneously with 5 micrograms of dexamethasone (DEXA) or vehicle (CON) for 5 days between Postnatal Days 4 and 8. On Postnatal Day 20, the animals were used for various studies. DEXA-treated pups weighed significantly less (P less than 0.001) than controls. Even though DEXA-treated animals had significantly smaller livers (P less than 0.001), microsomal protein per gram of liver was significantly greater (P less than 0.005) in the DEXA-treated animals. CH-7A activity (pmole/mg . min) was significantly lower (P less than 0.005) in the DEXA-treated animals (CON (4) 19.4 +/- 2.8; DEXA (4) 5.0 +/- 1.0). Plasma cholesterol (mg/100 ml) was significantly greater (P less than 0.005) in the DEXA-treated animals (CON (5) 179 +/- 7; DEXA (4) 223 +/- 5), a finding consistent with lower CH-7A activity in this group. Taurocholate absorption by in situ ileal loops in anesthetized rats was significantly greater in the DEXA-treated animals in agreement with the in vitro observations of Little and Lester. The basis for the reduced CH-7A activity in DEXA-treated pups is not known. It may be due in part to a new steady state in the enterohepatic circulation of bile acids resulting from a glucocorticoid-induced enhanced conservation of bile acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号