首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

2.
3.
Seeman NC 《Biochemistry》2003,42(24):7259-7269
Structural DNA nanotechnology is derived from naturally occurring structures and phenomena in cellular biochemistry. Motifs based on branched DNA molecules are linked together by sticky ends to produce objects, periodic arrays, and nanomechanical devices. The motifs include Holliday junction analogues, double and triple crossover molecules, knots, and parallelograms. Polyhedral catenanes, such as a cube or a truncated octahedron, have been assembled from branched junctions. Stiff motifs have been used to produce periodic arrays, containing topographic features visible in atomic force microscopy; these include deliberately striped patterns and cavities whose sizes can be tuned by design. Deliberately knotted molecules have been assembled. Aperiodic arrangements of DNA tiles can be used to produce assemblies corresponding to logical computation. Both DNA structural transitions and branch migration have been used as the basis for the operation of DNA nanomechanical devices. Structural DNA nanotechnology has been used in a number of applications in biochemistry. An RNA knot has been used to establish the existence of RNA topoisomerase activity. The sequence dependence of crossover isomerization and branch migration at symmetric sites has been established through the use of symmetric immobile junctions. DNA parallelogram arrays have been used to determine the interhelical angles for a variety of DNA branched junctions. The relationship between biochemistry and structural DNA nanotechnology continues to grow.  相似文献   

4.
The base composition of DNA and DNA homology of a number of strains Bacillus diastaticus differing in the intensity of the amilase synthesis and some phenotipic properties have been studied. The differences in the base composition of DNA have not been found. All stains studied are characterized by the high rate of DNA homology. B. diastaticus and B. stearothermophilus have been established to be genetically similar.  相似文献   

5.
Ultrasensitive molecular beacon (MB) DNA biosensors, with micrometer to submicrometer sizes, have been developed for DNA/RNA analysis. The fluorescence-based biosensors have been applied in DNA/ RNA detection without the need for a dye-labeled target molecule or an intercalation reagent in the testing solution. Molecular beacons are hairpin-shaped oligonucleotides that report the presence of specific nucleic acids. We have designed a surface-immobilizable biotinylated ssDNA molecular beacon for DNA hybridization at a liquid-solid interface. The MBs have been immobilized onto ultrasmall optical fiber probes through avidin-biotin binding. The MB DNA biosensor has been used directly to detect, in real time, its target DNA molecules without the need for a competitive assay. The biosensor is stable and reproducible. The MB DNA biosensor has selectivity with single base-pair mismatch identification capability. The concentration detection limits and mass detection limits are 0.3 nM and 15 amol for a 105-microm biosensor, and 10 nM and 0.27 amol for a submicrometer biosensor, respectively. We have also prepared molecular beacon DNA biosensor arrays for simultaneous analysis of multiple DNA sequences in the same solution. The newly developed DNA biosensors have been used for the precise quantification of a specific rat gamma-actin mRNA sequence amplified by the polymerase chain reaction.  相似文献   

6.
DNA catenanes have been prepared by the reaction of T4 DNA ligase with linear DNA in the presence of nicked DNA. Single molecular images of DNA catenanes and large circular DNAs have been clearly observed by AFM using a tapping mode at room temperature and in an ambient atmosphere.  相似文献   

7.
Uptake and persistence of the DNA of bacteriophage M13 and the cloned gene for the green fluorescent protein (GFP) as test genes for food-ingested DNA have previously been traced from the intestinal contents, via the gut wall, Peyer's patches and peripheral white blood cells to spleen and liver, and via the placenta to fetuses and newborn animals. We have now chosen a natural scenario and fed soybean leaves to mice. The distribution of the plant-specific, nucleus-encoded ribulose-1,5-bisphosphate carboxylase (Rubisco) gene has been studied in the mouse. The Rubisco gene or fragments of it can be recovered in the intestine from 2 h up to 49 h after feeding, and in the cecum up to 121 h after ingestion. Thus, plant-associated, naturally fed DNA is more stable in the intestinal tract than naked DNA. Rubisco gene-specific PCR products have also been amplified from spleen and liver DNA. There is no evidence for the expression of orally administered genes, as assessed by the RT-PCR method. Moreover, mice have been continuously fed daily with GFP DNA for 8 generations and have been examined for the transgenic state by assaying DNA isolated from tail tips, occasionally from internal organs of the animals, by PCR. The results have been uniformly negative and argue against the germline transfer of orally administered DNA. Upon the intramuscular injection of GFP DNA, authentic GFP DNA fragments have been amplified by PCR from DNA from muscle for up to 17 months post-injection, and from DNA from organs remote from the site of injection up to 24 h post injection. GFP fragments can also be retrieved from the intestinal contents up to 6 h post injection. The organism apparently eliminates injected foreign DNA via the liver-bile-intestinal route.  相似文献   

8.
Preventing transcriptional gene silencing by active DNA demethylation   总被引:6,自引:0,他引:6  
Kapoor A  Agius F  Zhu JK 《FEBS letters》2005,579(26):5889-5898
  相似文献   

9.
10.
Eukaryotic DNA ligases   总被引:9,自引:0,他引:9  
Recent studies on eukaryotic DNA ligases are briefly reviewed. The two distinguishable enzymes from mammalian cells, DNA ligase I and DNA ligase II, have been purified to homogeneity and characterized biochemically. Two distinct DNA ligases have also been identified in Drosophila melanogaster embryos. The genes encoding DNA ligases from Schizosaccharomyces pombe, Saccharomyces cerevisiae and vaccinia virus have been cloned and sequenced. These 3 proteins exhibit about 30% amino acid sequence identity; the 2 yeast enzymes share 53% amino acid sequence identity or conserved changes. Altered DNA ligase I activity has been found in cell lines from patients with Bloom's syndrome, although a causal link between the enzyme deficiency and the disease has not yet been proven.  相似文献   

11.
Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents.  相似文献   

12.
M. Septak 《Luminescence》1989,4(1):351-356
Chemiluminescent acridinium ester derivatives have been synthesized and covalently attached to suitably modified synthetic DNA oligonucleotides. Attachment of acridinium ester label to primary aliphatic amine group(s) present in the synthetic DNA probe molecule is rapid and efficient. Methods have been developed for efficient separation of acridinium ester-labelled DNA from unincorporated labelling reagent and underivatized DNA. The basic hydrogen peroxide detection reaction and photon counting conditions for measurement of chemiluminescence emission from acridinium ester-labelled DNA probes have been optimized. Under optimal conditions, the observed detection limit for the labelled DNA (1:1 mole ratio) is the same as for the free acridinium ester label, which is 2 attomole sensitivity in the best case studied.  相似文献   

13.
Single crystal x-ray diffraction methods have been used to characterize numerous oligonucleotide structures, providing valuable information on the fine structure of DNA, oligonucleotide hydration, interactions with small molecule ligands and proteins. There has been a particular focus on nonstandard base associations and a number of groups have sought to characterize different non-Watson-Crick base pairs to further the understanding of their influence on the structure of duplex DNA and RNA, and to investigate which structural features might be utilized by enzymes in recognition and repair of these errors in DNA. Bases that have been chemically damaged by mutagenic or carcinogenic agents have distinctive modified hydrogen-bonding patterns and these have been investigated. The structure determination of a series of nonduplex DNA structures including examples of a triplex, quadruplexes, and a novel DNA loop have recently been published. In this article we survey the structures of a series of non-Watson-Crick base associations in duplex DNA and RNA. We show how nonstandard base pairs, base triads, and tetrads play an important role in stabilizing nonduplex structures. © 1997 John Wiley & Sons, Inc. Biopoly 44: 91–103, 1997  相似文献   

14.
DNA polymerase beta   总被引:6,自引:0,他引:6  
Mammalian DNA polymerase beta(beta-pol) is a single polypeptide chain enzyme of 39kDa. beta-pol has enzymatic activities appropriate for roles in base excision repair and other DNA metabolism events involving gap-filling DNA synthesis. Many crystal structures of beta-pol complexed with dNTP and DNA substrates have been solved, and mouse fibroblast cell lines deleted in the beta-pol gene have been examined. These approaches have enhanced our understanding of structural and functional aspects of beta-pol's role in protecting genomic DNA.  相似文献   

15.
DNA methylation is a type of epigenetic marking that strongly influences chromatin structure and gene expression in plants and mammals. Over the past decade, DNA methylation has been intensively investigated in order to elucidate its control mechanisms. These studies have shown that small RNAs are involved in the induction of DNA methylation, that there is a relationship between DNA methylation and histone methylation, and that the base excision repair pathway has an important role in DNA demethylation. Some aspects of DNA methylation have also been shown to be shared with mammals, suggesting that the regulatory pathways are, in part at least, evolutionarily conserved. Considerable progress has been made in elucidating the mechanisms that control DNA methylation; however, many aspects of the mechanisms that read the information encoded by DNA methylation and mediate this into downstream regulation remain uncertain, although some candidate proteins have been identified. DNA methylation has a vital role in the inactivation of transposons, suggesting that DNA methylation is a key factor in the evolution and adaptation of plants.  相似文献   

16.
基于核酸结构单元的基本思想,在分析给出任意碱基对片段的自由度集合和两碱基对片段的简化自由度集合的基础上,建立了DNA/m5cDNA/RNA双螺旋结构的理论模型和两碱基对部分柔性的构象计算方法.利用本方法获得的标准B-DNA双螺旋构象参数与实验基本一致.根据DNA嵌插受体的统计性实验约束,优化产生了适用于阿霉素类抗癌药的三碱基对DNA片段的理论嵌插受体模型.  相似文献   

17.
Duplex DNA molecules and DNA bacteriophages have been sedimented through 5--25% sucrose gradients containing ethidium bromide. The location of DNA within the gradients has been determined by illuminating gradients with ultraviolet light and observing the ethidium bromide fluorescence enhancement induced by the DNA. The relative sedimentation rates of linear, duplex DNAs from bacteriophages T4, T5, T7 and an 8.3% T7 deletion mutant have been determined. The distances sedimented by DNA have been corrected, when necessary, for a progressive decrease in sedimentation rate that occurs after the DNA has traversed 40% of the sucrose gradient. The corrected distances sedimented by two DNA molecules, r1' and r2', are related to the DNA molecular weights, m1 and m2, by the equation: r1'/r2' = (m1/m2)0.38 when 0.025--0.70 microgram of each type of DNA is sedimented. Intact bacteriophages were also sedimented in ethidium bromide--sucrose gradients and detected by fluorescence enhancement.  相似文献   

18.
Aqueous mixtures of oppositely charged polyelectrolytes undergo associative phase separation, resulting in coacervation, gelation, or precipitation. This phenomenon has been exploited here to form DNA gel particles by interfacial diffusion. We report on the formation of DNA gel particles by mixing solutions of DNA (either single-stranded (ssDNA) or double-stranded (dsDNA)) with solutions of cationic surfactant cetyltrimetrylammonium bromide (CTAB). By using CTAB, the formation of DNA reservoir gel particles, without adding any kind of cross-linker or organic solvent, has been demonstrated. Particles have been characterized with respect to the degree of DNA entrapment, surface morphology, and secondary structure of DNA in the particles. The swelling/deswelling behavior and the DNA release have been investigated in response to salt additions. Analysis of the data has suggested a higher degree of interaction between ssDNA and the cationic surfactant, confirming the stronger amphiphilic character of the denatured DNA. Fluorescence microscopy studies have suggested that the formation of these particles is associated with a conservation of the secondary structure of DNA.  相似文献   

19.
The past decade has witnessed an exciting evolution in our understanding of eukaryotic DNA replication at the molecular level. Progress has been particularly rapid within the last few years due to the convergence of research on a variety of cell types, from yeast to human, encompassing disciplines ranging from clinical immunology to the molecular biology of viruses. New eukaryotic DNA replicases and accessory proteins have been purified and characterized, and some have been cloned and sequenced. In vitro systems for the replication of viral DNA have been developed, allowing the identification and purification of several mammalian replication proteins. In this review we focus on DNA polymerases alpha and delta and the polymerase accessory proteins, their physical and functional properties, as well as their roles in eukaryotic DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号