首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Munc18–1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18–1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18–1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18–1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18–1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25–deficient mice are used. We conclude that Munc18–1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.  相似文献   

2.
Andreas M. Ernst 《FEBS letters》2010,584(9):1713-7867
The complexity of pro- and eukaryotic lipidomes is increasingly appreciated mainly owing to the advance of mass spectrometric methods. Biophysical approaches have revealed that the large number of lipid classes and molecular species detected have implications for the self-organizing potential of biological membranes, resulting in the formation of lateral heterogeneous phases. How membrane proteins are able to adapt specifically to their surrounding heterogeneous matrix, and whether this environment affects protein targeting and function, is therefore a matter of particular interest. Here, we review specific protein-lipid interactions, focusing on the molecular mechanisms that determine specificity at the protein-lipid interface, and on membrane proteins that require lipids as cofactors for their architecture and function.  相似文献   

3.
Trans SNARE complex assembly is an essential step in Ca2+-dependent membrane fusion, although the SNARE proteins do not bind Ca2+ ions. Studies to evaluate how the Ca2+sensor protein calmodulin might regulate this process led to the identification of a consensus calmodulin binding motif in the v-SNARE VAMP2. This sequence (residues 77-90) is situated precisely C-terminal to the tetanus toxin (TeNT) and botulinum B toxin cleavage site (76Q-F77) close to the transmembrane anchor. The same domain also binds acidic phospholipids and Ca2+/calmodulin or lipid binding are mutually exclusive. Directed mutagenesis of basic or hydrophobic residues within this motif reduced interactions with both Ca2+/calmodulin and phospholipids to a similar extent. The effects of these mutations on Ca2+-dependent exocytosis was explored using an hGH release assay in permeabilized pheochromocytoma PC12 cells. Treatment of cells with tetanus toxin (TeNT), which cleaves endogenous VAMP, abolished secretion. Secretion could be re-established by transfecting TeNT-resistant VAMP with mutations (Q76V,F77W) in the cleavage site. However rescue of exocytosis was abolished when additional mutations (K83A,K87V or W89A,W90A) were introduced that inhibited calmodulin and phospholipid binding to VAMP. Thus calmodulin and/or phospholipid binding to the membrane proximal region of VAMP is required for Ca2+-dependent exocytosis. We speculate that interactions between cis phospholipids at the vesicle surface and the membrane proximal region of VAMP inhibits SNARE complex assembly. Displacement of these interactions by Ca2+/calmodulin may promote SNARE complex assembly and lead to trans interactions between the membrane proximal region of VAMP and phospholipids in the plasma membrane.  相似文献   

4.
5.
Bowen ME  Engelman DM  Brunger AT 《Biochemistry》2002,41(52):15861-15866
Synaptobrevin 2 is thought to facilitate fusion of synaptic vesicles with the presynaptic membrane through formation of a soluble NSF attachment protein receptor complex (SNARE) with syntaxin 1a and a synaptosomal associated protein of 25 kDa (SNAP-25). Previous reports have described a homodimer of synaptobrevin that is dependent on the transmembrane domain. However, these reports disagree about the magnitude of dimerization, which makes it difficult to assess the biological relevance of this interaction. We used SDS-PAGE and the TOXCAT genetic assay to reexamine the homodimerization of the synaptobrevin transmembrane domain in detergents and the Escherichia coli inner membrane, respectively. To gauge the magnitude of synaptobrevin homodimerization, we used the well-characterized glycophorin A homodimer as a positive standard. In contrast to previous studies, we found synaptobrevin homodimerization in E. coli is very weak when compared to glycophorin A. Recombinant synaptobrevin forms a small amount of dimer and higher order oligomers in detergents that are highly dependent on solublization conditions. We estimate a dissociation constant of 10 mM for synaptobrevin dimerization in detergent. Thus, the dimerization of synaptobrevin in membranes is very weak, questioning any possible functional role for this association in vivo.  相似文献   

6.
7.
Astrocytes possess much of the same exocytotic protein machinery as neurons do and can release various gliotransmitters stored in their secretory vesicles. An essential component of this exocytotic machinery is the vesicle-associated membrane protein synaptobrevin 2 (Sb2). In order to assess whether vesicular age plays a role in determining the intracellular location of vesicles in astrocytes, we generated a fluorescent chimeric form of Sb2. We appended the Sb2 cytosolic N-terminus with the fluorescent 'timer' protein DsRedE5, which changes its fluorescence emission from green to red as it ages. We found that Sb2-containing vesicles in astrocytes segregate and localize intracellularly in an age dependent manner. Younger vesicles predominately localize at the periphery of cell somata and processes, while older vesicles predominately locate at the central portion of the cell body. These findings raise the notion that there might be differential astrocyte-neuron signaling at sites away or at the tripartite synapse that could be modulated by the age of vesicles and/or their cargo.  相似文献   

8.
Voltage-gated potassium channels are important regulators of electrical excitation in many tissues, with Kv1.2 standing out as an essential contributor in the CNS. Genetic deletion of Kv1.2 invariably leads to early lethality in mice. In humans, mutations affecting Kv1.2 function are linked to epileptic encephalopathy and movement disorders. We have demonstrated that Kv1.2 is subject to a unique regulatory mechanism in which repetitive stimulation leads to dramatic potentiation of current. In this study, we explore the properties and molecular determinants of this use-dependent potentiation/activation. First, we examine how alterations in duty cycle (depolarization and repolarization/recovery times) affect the onset and extent of use-dependent activation. Also, we use trains of repetitive depolarizations to test the effects of a variety of Thr252 (S2-S3 linker) mutations on use-dependent activation. Substitutions of Thr with some sterically similar amino acids (Ser, Val, and Met, but not Cys) retain use-dependent activation, while bulky or charged amino acid substitutions eliminate use-dependence. Introduction of Thr at the equivalent position in other Kv1 channels (1.1, 1.3, 1.4), was not sufficient to transfer the phenotype. We hypothesize that use-dependent activation of Kv1.2 channels is mediated by an extrinsic regulator that binds preferentially to the channel closed state, with Thr252 being necessary but not sufficient for this interaction to alter channel function. These findings extend the conclusions of our recent demonstration of use-dependent activation of Kv1.2-containing channels in hippocampal neurons, by adding new details about the molecular mechanism underlying this effect.  相似文献   

9.
A N Pokrovski? 《Biofizika》1985,30(2):356-358
Hodgkin-Huxly equations accounting for (stationary) control signals (synaptic conductivity and current) have stationary and periodic solutions. The domain of unstability of stationary solutions determined on the control signals plane (excitation and inhibition). On one part of the domain boundary a decrease of excitation and increase of inhibition suppress oscillations. On another part of the boundary they induced oscillations, which were not explained previously in accordance with the experimental data.  相似文献   

10.
11.
Synaptobrevin is a vesicle-associated membrane protein playing an essential role in regulated vesicle transport. In this study, we characterized Syb1, synaptobrevin of Schizosaccharomyces pombe. Syb1 was located on various sizes of vesicle-like structures in the cytoplasm and enriched in the medial region and cell ends. Transport of Syb1 to the medial region was mainly dependent on F-actin and Myo52/Myo4. Syb1 is essential for cell viability and most of the syb1-null cells showed a round or short cylindrical form. These results suggest that Syb1 is involved in membrane trafficking of cytokinesis and cell elongation.  相似文献   

12.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

13.
Neuronal synaptobrevin (n-Syb, alias VAMP2), a synaptic vesicle membrane protein with a central role in neurotransmission, is specifically cleaved by the light chain of tetanus neurotoxin (TNT) that is known to reliably block neuroexocytosis. Here, we study fly photoreceptors transmitting continuous, graded signals to first order interneurons in the lamina, and report consequences of targeted expression of TNT in these cells using the UAS/GAL4 driver/effector system. Expressing the toxin throughout photoreceptor development causes developmental, electrophysiological, and behavioral defects. These can be differentiated by confining toxin expression to shorter developmental periods. Applying a method for controlled temporal and spatial TNT expression, we found that in the early pupa it impaired the development of the retina; in the midpupa, during synapse formation TNT caused a severe hypoplasia of the lamina that persisted into adulthood and left the photoreceptor-interneuron synapses of the lamina without function. Finally, during adulthood TNT neither blocks synaptic transmission in photoreceptors nor depletes the cells of n-Syb. Our study suggests a novel, cell type-specific function of n-Syb in synaptogenesis and it distinguishes between two synapse types: TNT resistant and TNT sensitive ones. These results need to be taken into account if TNT is used for neural circuit analysis.  相似文献   

14.
Synaptophysin is one of the most abundant membrane proteins of small synaptic vesicles. In mature nerve terminals it forms a complex with the vesicular membrane protein synaptobrevin, which appears to modulate synaptobrevin's interaction with the plasma membrane-associated proteins syntaxin and SNAP25 to form the SNARE complex as a prerequisite for membrane fusion. Here we show that synaptobrevin is preferentially cleaved by tetanus toxin while bound to synaptophysin or when existing as a homodimer. The synaptophysin/synaptobrevin complex is, however, not affected when neuronal secretion is blocked by botulinum A toxin which cleaves SNAP25. Excessive stimulation with alpha-latrotoxin or Ca(2+)-ionophores dissociates the synaptophysin/synaptobrevin complex and increases the interaction of the other SNARE proteins. The stimulation-induced dissociation of the synaptophysin/synaptobrevin complex is not inhibited by pre-incubating neurones with botulinum A toxin, but depends on extracellular calcium. However, the synaptophysin/synaptobrevin complex cannot be directly dissociated by calcium alone or in combination with magnesium. The dissociation of synaptobrevin from synaptophysin appears to precede its interaction with the other SNARE proteins and does not depend on the final fusion event. This finding further supports the modulatory role the synaptophysin/synaptobrevin complex may play in mature neurones.  相似文献   

15.
The functional interplay between tBID and phospholipids was investigated in this study. The binding of tBID to model membranes was increased by an incorporation of phosphatidylserine (PS) into the liposomes. Using limited proteolysis and mass spectrometry, two peptide regions, which correspond to Ser(100)-Arg(114) and His(89)-Arg(114) in BID, revealed the specific PS-binding site. tBID also decreased the light scattering values of PS-containing liposomes and increased the leakage of fluorescent dye encapsulated in vesicles, which suggest that tBID reduces membrane integrity by fragmentation. The membrane fragmentation by tBID was also observed using confocal and transmission electron microscopy. The activity of tBID paralleled results that were obtained with cardiolipin (CL)-containing membranes. However, other anionic phospholipids had little effect. CL- and PS-induced conformational changes of tBID were observed by circular dichroism and intrinsic fluorescence. CL and PS also stimulated the insertion of BID into lipid monolayers. tBID stimulated the leakage of Ca(2+) from purified microsomes and mitochondria in a protein concentration-dependent manner. In contrast, BID showed significantly reduced effects when compared to tBID in all of the experiments performed. These results suggest that tBID specifically interacts with PS as well as CL and decreases membrane integrity without the aid of other pro-apoptotic proteins.  相似文献   

16.
17.
Rab GTPases are molecular switches with essential roles in mediating vesicular trafficking and establishing organelle identity. The conversion from the inactive, cytosolic to the membrane-bound, active species and back is tightly controlled by regulatory proteins. Recently, the roles of membrane properties and lipid composition of different target organelles in determining the activity state of Rabs have come to light. The investigation of several Rab guanine nucleotide exchange factors (GEFs) has revealed principles of how the recruitment via lipid interactions and the spatial confinement on the membrane surface contribute to spatiotemporal specificity in the Rab GTPase network. This paints an intricate picture of the control mechanisms in Rab activation and highlights the importance of the membrane lipid code in the organization of the endomembrane system.  相似文献   

18.
The effect of monosialoganglioside GM1 on induced free radical reactions in the synaptosomal and myelin membranes induced by Fe(2+)-H2O2 system was studied. The formation of free radicals was determined by measuring luminol-dependent chemoluminescence. It was found that preincubation of the membranes with GM1 (10(-11)-10(-6) M) and 12 or 12-palmitate, 13-acetate phorbol ester (10(-7)-10(-6) M) or alpha-tocopherol (10(-6) M) results in the decrease of chemiluminescent response. The inhibiting effect of alpha-tocopherol (but not of other compound tested) takes place without any preincubation as well. When the effect of GM1 was studied over a wide range of GM1 concentrations, a biphasic kinetics was observed, the highest per cent of inhibition of chemoluminescence being found at 10(-8) M. The data obtained provide evidence that the inhibition of free radical reactions in the brain membranes by nanomolar concentration of GM1 is not due to its interaction with lipid radicals. The results suggested that the inhibiting effect of GM1 is mediated through signal transduction system.  相似文献   

19.
20.
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号