首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptic vesicle fusion is catalyzed by assembly of synaptic SNARE complexes, and is regulated by the synaptic vesicle GTP-binding protein Rab3 that binds to RIM and to rabphilin. RIM is a known physiological regulator of fusion, but the role of rabphilin remains obscure. We now show that rabphilin regulates recovery of synaptic vesicles from use-dependent depression, probably by a direct interaction with the SNARE protein SNAP-25. Deletion of rabphilin dramatically accelerates recovery of depressed synaptic responses; this phenotype is rescued by viral expression of wild-type rabphilin, but not of mutant rabphilin lacking the second rabphilin C2 domain that binds to SNAP-25. Moreover, deletion of rabphilin also increases the size of synaptic responses in synapses lacking the vesicular SNARE protein synaptobrevin in which synaptic responses are severely depressed. Our data suggest that binding of rabphilin to SNAP-25 regulates exocytosis of synaptic vesicles after the readily releasable pool has either been physiologically exhausted by use-dependent depression, or has been artificially depleted by deletion of synaptobrevin.  相似文献   

2.
BACKGROUND: In neurons, release of neurotransmitter occurs through the fusion of synaptic vesicles with the plasma membrane. Many proteins required for this process have been identified, with the SNAREs syntaxin 1, SNAP-25, and synaptobrevin thought to constitute the core fusion machinery. However, there is still a large gap between our understanding of individual protein-protein interactions and the functions of these proteins revealed by perturbations in intact synaptic preparations. To bridge this gap, we have used purified synaptic vesicles, together with artificial membranes containing core-constituted SNAREs as reaction partners, in fusion assays. RESULTS: By using complementary experimental approaches, we show that synaptic vesicles fuse constitutively, and with high efficiency, with proteoliposomes containing the plasma membrane proteins syntaxin 1 and SNAP-25. Fusion is inhibited by clostridial neurotoxins and involves the formation of SNARE complexes. Despite the presence of endogenous synaptotagmin, Ca(2+) does not enhance fusion, even if phosphatidylinositol 4,5-bisphosphate is present in the liposome membrane. Rather, fusion kinetics are dominated by the availability of free syntaxin 1/SNAP-25 acceptor sites for synaptobrevin. CONCLUSIONS: Synaptic vesicles are constitutively active fusion machines, needing only synaptobrevin for activity. Apparently, the final step in fusion does not involve the regulatory activities of other vesicle constituents, although these may be involved in regulating earlier processes. This is particularly relevant for the calcium-dependent regulation of exocytosis, which, in addition to synaptotagmin, requires other factors not present in the vesicle membrane. The in vitro system described here provides an ideal starting point for unraveling of the molecular details of such regulatory events.  相似文献   

3.
Upon Ca2+ influx synaptic vesicles fuse with the plasma membrane and release their neurotransmitter cargo into the synaptic cleft. Key players during this process are the Q-SNAREs syntaxin 1a and SNAP-25 and the R-SNARE synaptobrevin 2. It is thought that these membrane proteins gradually assemble into a tight trans-SNARE complex between vesicular and plasma membrane, ultimately leading to membrane fusion. Tomosyn is a soluble protein of 130 kDa that contains a COOH-terminal R-SNARE motif but lacks a transmembrane anchor. Its R-SNARE motif forms a stable core SNARE complex with syntaxin 1a and SNAP-25. Here we present the crystal structure of this core tomosyn SNARE complex at 2.0-A resolution. It consists of a four-helical bundle very similar to that of the SNARE complex containing synaptobrevin. Most differences are found on the surface, where they prevented tight binding of complexin. Both complexes form with similar rates as assessed by CD spectroscopy. In addition, synaptobrevin cannot displace the tomosyn helix from the tight complex and vice versa, indicating that both SNARE complexes represent end products. Moreover, data bank searches revealed that the R-SNARE motif of tomosyn is highly conserved throughout all eukaryotic kingdoms. This suggests that the formation of a tight SNARE complex is important for the function of tomosyn.  相似文献   

4.
The vesicular protein synaptobrevin contributes to two mutually exclusive complexes in mature synapses. Synaptobrevin tightly interacts with the plasma membrane proteins syntaxin and SNAP 25 forming the SNARE complex as a prerequisite for exocytotic membrane fusion. Alternatively, synaptobrevin binds to the vesicular protein synaptophysin. It is unclear whether SNARE complex formation is diminished or facilitated when synaptobrevin is bound to synaptophysin. Here we show that the synaptophysin-synaptobrevin complex is increased in adult rat brain after repeated synaptic hyperactivity in the kindling model of epilepsy. Two days after the last kindling-induced stage V seizure the relative amount of synaptophysin-synaptobrevin complex obtained by co-immunoprecipitation from cortical and hippocampal membranes was increased twofold compared to controls. By contrast the relative amounts of various synaptic proteins as well as that of the SNARE complex did not change in membrane preparations from kindled rats compared to controls. The increased amount of synaptophysin-synaptobrevin complex in kindled rats supports the idea that this complex represents a reserve pool for synaptobrevin enabling synaptic vesicles to adjust to an increased demand for synaptic efficiency. We conclude that the synaptophysin-synaptobrevin interaction is involved in activity-dependent plastic changes in adult rat brain.  相似文献   

5.
Assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins between two opposing membranes is thought to be the key event that initiates membrane fusion. Many new SNARE proteins have recently been localized to distinct intracellular compartments, supporting the view that sets of specific SNAREs are specialized for distinct trafficking steps. We have now investigated whether other SNAREs can form complexes with components of the synaptic SNARE complex including synaptobrevin/VAMP 2, SNAP-25, and syntaxin 1. When the Q-SNAREs syntaxin 2, 3, and 4, and the R-SNARE endobrevin/VAMP 8 were used in various combinations, heat-resistant complexes were formed. Limited proteolysis revealed that these complexes contained a protease-resistant core similar to that of the synaptic complex. All complexes were disassembled by the ATPase N-ethylmaleimide-sensitive fusion protein and its cofactor alpha-SNAP. Circular dichroism spectroscopy showed that major conformational changes occur during assembly, which are associated with induction of structure from unstructured monomers. Furthermore, no preference for synaptobrevin was observed during the assembly of the synaptic complex when endobrevin/VAMP 8 was present in equal concentrations. We conclude that cognate and non-cognate SNARE complexes are very similar with respect to biophysical properties, assembly, and disassembly, suggesting that specificity of membrane fusion in intracellular membrane traffic is not due to intrinsic specificity of SNARE pairing.  相似文献   

6.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

7.
Assembly of the SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 to binary and ternary complexes is important for docking and/or fusion of presynaptic vesicles to the neuronal plasma membrane prior to regulated neurotransmitter release. Despite the well characterized structure of their cytoplasmic assembly domains, little is known about the role of the transmembrane segments in SNARE protein assembly and function. Here, we identified conserved amino acid motifs within the transmembrane segments that are required for homodimerization of synaptobrevin II and syntaxin 1A. Minimal motifs of 6-8 residues grafted onto an otherwise monomeric oligoalanine host sequence were sufficient for self-interaction of both transmembrane segments in detergent solution or membranes. These motifs constitute contiguous areas of interfacial residues assuming alpha-helical secondary structures. Since the motifs are conserved, they also contributed to heterodimerization of synaptobrevin II and syntaxin 1A and therefore appear to constitute interaction domains independent of the cytoplasmic coiled coil regions. Interactions between the transmembrane segments may stabilize the SNARE complex, cause its multimerization to previously observed multimeric superstructures, and/or be required for the fusogenic activity of SNARE proteins.  相似文献   

8.
近年来,对突触小泡释放神经递质分子机制的研究迅速发展,发现了大量位于神经末梢的蛋白质.它们之间的相互作用与突触小泡释放神经递质相关,特别是位于突触小泡膜上的突触小泡蛋白/突触小泡相关膜蛋白(synaptobrevin/VAMP),位于突触前膜上的syntaxin和突触小体相关蛋白(synaptosome-associated protein of 25 ku),三者聚合形成的可溶性NSF附着蛋白受体(SNARE)核心复合体在突触小泡的胞裂外排、释放递质过程中有重要作用.而一些已知及未知的与SNARE蛋白有相互作用的蛋白质,可通过调节SNARE核心复合体的形成与解离来影响突触小泡的胞裂外排,从而可以调节突触信号传递的效率及强度,在突触可塑性的形成中起重要作用.  相似文献   

9.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.  相似文献   

10.
Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate that isolated synaptobrevin is largely unfolded in solution. The entire SNARE motif of synaptobrevin is capable of interacting with the isolated C-terminal SNARE motif of syntaxin but only a few residues bind to the full-length cytoplasmic region of syntaxin. This result suggests an interaction between the N- and C-terminal regions of syntaxin that competes with core complex assembly.  相似文献   

11.
Before exocytosis, vesicles must first become docked to the plasma membrane. The SNARE complex was originally hypothesized to mediate both the docking and fusion steps in the secretory pathway, but previous electron microscopy (EM) studies indicated that the vesicular SNARE protein synaptobrevin (syb) was dispensable for docking. In this paper, we studied the function of syb in the docking of large dense-core vesicles (LDCVs) in live PC12 cells using total internal reflection fluorescence microscopy. Cleavage of syb by a clostridial neurotoxin resulted in significant defects in vesicle docking in unfixed cells; these results were confirmed via EM using cells that were prepared using high-pressure freezing. The membrane-distal portion of its SNARE motif was critical for docking, whereas deletion of a membrane-proximal segment had little effect on docking but diminished fusion. Because docking was also inhibited by toxin-mediated cleavage of the target membrane SNAREs syntaxin and SNAP-25, syb might attach LDCVs to the plasma membrane through N-terminal assembly of trans-SNARE pairs.  相似文献   

12.
Synaptophysin is one of the most abundant membrane proteins of small synaptic vesicles. In mature nerve terminals it forms a complex with the vesicular membrane protein synaptobrevin, which appears to modulate synaptobrevin's interaction with the plasma membrane-associated proteins syntaxin and SNAP25 to form the SNARE complex as a prerequisite for membrane fusion. Here we show that synaptobrevin is preferentially cleaved by tetanus toxin while bound to synaptophysin or when existing as a homodimer. The synaptophysin/synaptobrevin complex is, however, not affected when neuronal secretion is blocked by botulinum A toxin which cleaves SNAP25. Excessive stimulation with alpha-latrotoxin or Ca(2+)-ionophores dissociates the synaptophysin/synaptobrevin complex and increases the interaction of the other SNARE proteins. The stimulation-induced dissociation of the synaptophysin/synaptobrevin complex is not inhibited by pre-incubating neurones with botulinum A toxin, but depends on extracellular calcium. However, the synaptophysin/synaptobrevin complex cannot be directly dissociated by calcium alone or in combination with magnesium. The dissociation of synaptobrevin from synaptophysin appears to precede its interaction with the other SNARE proteins and does not depend on the final fusion event. This finding further supports the modulatory role the synaptophysin/synaptobrevin complex may play in mature neurones.  相似文献   

13.
Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved Habc domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the Habc domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin Habc domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Qbc configuration. We found that neither the linker nor the Qbc configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.  相似文献   

14.
The Ca(2+)-triggered release of neurotransmitters is mediated by fusion of synaptic vesicles with the plasma membrane. The molecular machinery that translates the Ca(2+) signal into exocytosis is only beginning to emerge. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin, SNAP-25, and synaptobrevin are central components of the fusion apparatus. Assembly of a membrane-bridging ternary SNARE complex is thought to initiate membrane merger, but the roles of other factors are less understood. Complexins are two highly conserved proteins that modulate the Ca(2+) responsiveness of neurotransmitter release. In vitro, they bind in a 1:1 stoichiometry to the assembled synaptic SNARE complex, making complexins attractive candidates for controlling the exocytotic fusion apparatus. We have now performed a detailed structural, kinetic, and thermodynamic analysis of complexin binding to the SNARE complex. We found that no major conformational changes occur upon binding and that the complexin helix is aligned antiparallel to the four-helix bundle of the SNARE complex. Complexins bound rapidly (approximately 5 x 10(7) m(-1) s(-1)) and with high affinity (approximately 10 nm), making it one of the fastest protein-protein interactions characterized so far in membrane trafficking. Interestingly, neither affinity nor binding kinetics was substantially altered by Ca(2+) ions. No interaction of complexins was detectable either with individual SNARE proteins or with the binary syntaxin x SNAP-25 complex. Furthermore, complexin did not promote the formation of SNARE complex oligomers. Together, our data suggest that complexins modulate neuroexocytosis after assembly of membrane-bridging SNARE complexes.  相似文献   

15.
At low surface concentrations that permit formation of impermeable membranes, neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptor (SNARE) proteins form a stable, parallel, trans complex when vesicles are brought into contact by a low concentration of poly(ethylene glycol) (PEG). Surprisingly, formation of a stable SNARE complex does not trigger fusion under these conditions. However, neuronal SNAREs do promote fusion at low protein/lipid ratios when triggered by higher concentrations of PEG. Promotion of PEG-triggered fusion required phosphatidylserine and depended only on the surface concentration of SNAREs and not on the formation of a trans SNARE complex. These results were obtained at protein surface concentrations reported for synaptobrevin in synaptic vesicles and with an optimally fusogenic lipid composition. At a much higher protein/lipid ratio, vesicles joined by SNARE complex slowly mixed lipids at 37 degrees C in the absence of PEG, in agreement with earlier reports. However, vesicles containing syntaxin at a high protein/lipid ratio (>or=1:250) lost membrane integrity. We conclude that the neuronal SNARE complex promotes fusion by joining membranes and that the individual proteins syntaxin and synaptobrevin disrupt membranes so as to favor formation of a stalk complex and to promote conversion of the stalk to a fusion pore. These effects are similar to the effects of viral fusion peptides and transmembrane domains, but they are not sufficient by themselves to produce fusion in our in vitro system at surface concentrations documented to occur in synaptic vesicles. Thus, it is likely that proteins or factors other than the SNARE complex must trigger fusion in vivo.  相似文献   

16.
X-ray structure of a neuronal complexin-SNARE complex from squid   总被引:2,自引:0,他引:2  
Nerve terminals release neurotransmitters from vesicles into the synaptic cleft upon transient increases in intracellular Ca(2+). This exocytotic process requires the formation of trans SNARE complexes and is regulated by accessory proteins including the complexins. Here we report the crystal structure of a squid core complexin-SNARE complex at 2.95-A resolution. A helical segment of complexin binds in anti-parallel fashion to the four-helix bundle of the core SNARE complex and interacts at its C terminus with syntaxin and synaptobrevin around the ionic zero layer of the SNARE complex. We propose that this structure is part of a multiprotein fusion machinery that regulates vesicle fusion at a late pre-fusion stage. Accordingly, Ca(2+) may initiate membrane fusion by acting directly or indirectly on complexin, thus allowing the conformational transitions of the trans SNARE complex that are thought to drive membrane fusion.  相似文献   

17.
The three key players in the exocytotic release of neurotransmitters from synaptic vesicles are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin 2, syntaxin 1a, and SNAP-25. Their assembly into a tight four-helix bundle complex is thought to pull the two membranes into close proximity. It is debated, however, whether the energy generated suffices for membrane fusion. Here, we have determined the thermodynamic properties of the individual SNARE assembly steps by isothermal titration calorimetry. We found extremely large favorable enthalpy changes counterbalanced by positive entropy changes, reflecting the major conformational changes upon assembly. To circumvent the fact that ternary complex formation is essentially irreversible, we used a stabilized syntaxin-SNAP-25 heterodimer to study synaptobrevin binding. This strategy revealed that the N-terminal synaptobrevin coil binds reversibly with nanomolar affinity. This suggests that individual, membrane-bridging SNARE complexes can provide much less pulling force than previously claimed.The molecular machinery that drives the Ca2+-dependent release of neurotransmitters from synaptic vesicles is studied intensively. Three key players in the underlying exocytotic fusion of the vesicle with the plasma membrane are the proteins synaptobrevin 2/VAMP2 (vesicle-associated membrane protein), syntaxin 1a, and SNAP-253 (for review, see Refs. 1-7). They belong to the so-called SNARE protein family, the members of which are involved in all vesicle fusion steps in the endocytic and secretory pathway. In general, SNARE proteins are relatively small, tail-anchored membrane proteins. Their key characteristic is the so-called SNARE motif, an extended stretch of heptad repeats that is usually connected to a single transmembrane domain by a short linker. Syntaxin and synaptobrevin each contain a single SNARE motif, whereas SNAP-25 contains two SNARE motifs connected by a palmitoylated linker region serving as a membrane anchor. The SNARE motifs of the three proteins assemble into a very tight four-helix bundle between opposing membranes; during this process the plasma membrane proteins syntaxin and SNAP-25 provide the binding site for the vesicular synaptobrevin. Formation of this complex is accompanied by extensive structural rearrangements (8-10). Based on these findings, it was put forward that the formation of the SNARE bundle provides the energy that drives membrane fusion. As the bundle is oriented in parallel, it is thought that formation of this complex starts from the membrane-proximal N termini and proceeds toward the C-terminal membrane anchors, effectively pulling the membranes together (the “zipper” model) (11). Although the zipper scenario is intuitive, it has been difficult to demonstrate directly.A decade ago it was shown that the three neuronal SNARE proteins are sufficient to fuse artificial vesicles (12). However, this reductionist approach yields rather slow fusion rates (12-14). Over the years various different end products of SNARE catalysis (complete fusion, hemifusion, and only tethered membranes) have been reported (15-19). These unsatisfactory results have fueled the debate over whether the assembly process indeed provides enough impetus to fuse bilayers. Not surprisingly, an alternative scenario has been put forward in which repulsive forces between membranes bring the SNARE assembly to a grinding halt. According to this idea, other factors like the Ca2+ sensor synaptotagmin or the small soluble protein complexin are needed to induce membrane merging (20-22).In simple terms, to find out whether the SNARE complex assembly is enough for membrane fusion, only the amount of energy released during complex formation and the amount of energy needed for membrane fusion need to be compared. However, the physics of membrane fusion are very complicated, and it is even more challenging to understand how proteins modulate the process. The free energy for bilayer fusion in an aqueous environment is not very high, but fusion is thought to require a large activation energy of about 40 kBT, as two charged membranes have to be brought into close apposition. According to a theoretical model, the apposing membranes then need to be modified into a stalk-like configuration. Before fusion occurs, the process is thought to pass through a hemifusion intermediate in which only the outer monolayers are merged (for review, see Refs. 23 and 24). The role of fusion proteins is thought to lower the energy barrier for membrane fusion, but understanding how they modulate the lipid membrane and how their conformational changes are translated into a mechanical force is still in its infancy. It is not clear, for instance, whether SNARE-catalyzed fusion indeed proceeds through a stalk-like structure or just locally alters the membranes, a mechanism that might need much less activation energy.As the folding and unfolding transitions of the ternary SNARE complex exhibit a marked hysteresis (25), the question of how much energy is released during complex formation has been difficult to answer as well. To avoid the quasi-irreversibility of the process, the problem has been elegantly tackled by atomic force microscopy by two different research groups (26-28). In these experiments individual complexes affixed to solid supports were ruptured, yielding energy values of 43 and 33 kBT. In another approach, which used a surface-force apparatus (SFA), a comparable energy of 35 kBT has recently been determined (29). Strikingly, these values appear to correspond closely with the activation energy needed to fuse two membranes, substantiating the view that SNAREs are nano-fusion machineries. However, one should be cautious about the conclusion that these sophisticated procedures in fact yield the genuine SNARE assembly energy. For example, with the SFA approach, the number of complexes had to be deduced rather indirectly to estimate the free energy. Moreover, these approaches offered only indirect information about the reaction pathway.In this study we set out to determine the SNARE assembly energy more directly by using isothermal titration calorimetry (ITC) complemented by kinetic measurements. ITC is a powerful technique for studying the thermodynamics of macromolecular interactions by directly measuring the heat changes associated with complex formation, which at constant pressure is equal to the enthalpy change (ΔH). The titration approach also yields the stoichiometry (n), the entropy change (ΔS), and the association constant (KA) of the reaction. We studied the consecutive reaction steps individually to gain deeper insights into the rugged energy landscape of complex formation. To study synaptobrevin binding in isolation, we used a stabilized syntaxin-SNAP-25 heterodimer, which has been shown to greatly accelerate liposome fusion rates (30). This strategy revealed that the N-terminal coil of synaptobrevin binds reversibly, making it feasible to access the free energy of SNARE assembly. Overall, our results suggest that individual SNARE complexes might provide much less pulling energy than previously claimed.  相似文献   

18.
Chen Y  Xu Y  Zhang F  Shin YK 《The EMBO journal》2004,23(4):681-689
SNARE complex formation is essential for intracellular membrane fusion. Vesicle-associated (v-) SNARE intertwines with target membrane (t-) SNARE to form a coiled coil that bridges two membranes and facilitates fusion. For the SNARE family involved in neuronal communications, complex formation is tightly regulated by the v-SNARE-membrane interactions. However, it was found using EPR that complex formation is spontaneous for a different SNARE family that is involved in protein trafficking in yeast. Further, reconstituted yeast SNAREs promoted membrane fusion, different from the inhibited fusion for reconstituted neuronal SNAREs. The EPR structural analysis showed that none of the coiled-coil residues of yeast v-SNARE is buried in the hydrophobic layer of the membrane, making the entire coiled-coil motif accessible, again different from the deep insertion of the membrane-proximal region of neuronal v-SNARE into the bilayer. Importantly, yeast membrane fusion is constitutively active, while synaptic membrane fusion is regulated, consistent with the present results for two SNARE families. Thus, the v-SNARE-membrane interaction may be a major molecular determinant for regulated versus constitutive membrane fusion in cells.  相似文献   

19.
The SNARE proteins are essential components of the intracellular fusion machinery. It is thought that they form a tight four-helix complex between membranes, in effect initiating fusion. Most SNAREs contain a single coiled-coil region, referred to as the SNARE motif, directly adjacent to a single transmembrane domain. The neuronal SNARE SNAP-25 defines a subfamily of SNARE proteins with two SNARE helices connected by a longer linker, comprising also the proteins SNAP-23 and SNAP-29. We now report the initial characterization of a novel vertebrate homologue termed SNAP-47. Northern blot and immunoblot analysis revealed ubiquitous tissue distribution, with particularly high levels in nervous tissue. In neurons, SNAP-47 shows a widespread distribution on intracellular membranes and is also enriched in synaptic vesicle fractions. In vitro, SNAP-47 substituted for SNAP-25 in SNARE complex formation with the neuronal SNAREs syntaxin 1a and synaptobrevin 2, and it also substituted for SNAP-25 in proteoliposome fusion. However, neither complex assembly nor fusion was as efficient as with SNAP-25.  相似文献   

20.
Munc13‐1 is crucial for neurotransmitter release and, together with Munc18‐1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin‐1, SNAP‐25, and synaptobrevin. Assembly starts with syntaxin‐1 folded into a self‐inhibited closed conformation that binds to Munc18‐1. Munc13‐1 is believed to catalyze the opening of syntaxin‐1 to facilitate SNARE complex formation. However, different types of Munc13‐1‐syntaxin‐1 interactions have been reported to underlie this activity, and the critical nature of Munc13‐1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13‐1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin‐1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13‐1 fragments, even though binding of this linker region to Munc13‐1 is barely detectable. Conversely, the syntaxin‐1 SNARE motif clearly binds to Munc13‐1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13‐1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13‐1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin‐1 via interactions with the linker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号