首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Caenorhabditis elegans expresses a glutathione transferase (GST) belonging to the Pi class, for which we propose the name CeGSTP2-2. CeGSTP2-2 (the product of the gst-10 gene) has the ability to conjugate the lipid peroxidation product 4-hydroxynonenal (4-HNE). Transgenic C. elegans strains were generated in which the 5'-flanking region and promoter of gst-10 were placed upstream of gst-10 and mGsta4 cDNAs, respectively. mGsta4 encodes the murine mGSTA4-4, an enzyme with particularly high catalytic efficiency for 4-HNE. The localization of both transgenes was similar to that of native CeGSTP2-2. The 4-HNE-conjugating activity in worm lysates increased in the order: control相似文献   

2.
Evans EA  Chen WC  Tan MW 《Aging cell》2008,7(6):879-893
The Caenorhabditis elegans DAF-2 insulin-like signaling pathway, which regulates lifespan and stress resistance, has also been implicated in resistance to bacterial pathogens. Loss-of-function daf-2 and age-1 mutants have increased lifespans and are resistant to a variety of bacterial pathogens. This raises the possibility that the increased longevity and the pathogen resistance of insulin-like signaling pathway mutants are reflections of the same underlying mechanism. Here we report that regulation of lifespan and resistance to the bacterial pathogen Pseudomonas aeruginosa is mediated by both shared and genetically distinguishable mechanisms. We find that loss of germline proliferation enhances pathogen resistance and this effect requires daf-16, similar to the regulation of lifespan. In contrast, the regulation of pathogen resistance and lifespan is decoupled within the DAF-2 pathway. Long-lived mutants of genes downstream of daf-2, such as pdk-1 and sgk-1, show wildtype resistance to pathogens. However, mutants of akt-1 and akt-2, which we find to individually have modest effects on lifespan, show enhanced resistance to pathogens. We also demonstrate that pathogen resistance of daf-2, akt-1, and akt-2 mutants is associated with restricted bacterial colonization, and that daf-2 mutants are better able to clear an infection after challenge with P. aeruginosa. Moreover, we find that pathogen resistance among insulin-like signaling mutants is associated with increased expression of immunity genes during infection. Other processes that affect organismal longevity, including Jun kinase signaling and caloric restriction, do not affect resistance to bacterial pathogens, further establishing that aging and innate immunity are regulated by genetically distinct mechanisms.  相似文献   

3.
Molecular genetics in lower organisms has allowed the elucidation of pathways that modulate the aging process. In certain instances, evolutionarily conserved genes and pathways have been shown to regulate lifespan in mammals as well. Many gene products known to affect lifespan are intimately involved in the control of energy metabolism, including the fuel sensor AMP-activated protein kinase (AMPK). We have shown previously that over-expression of an AMPK alpha subunit in Caenorhabditis elegans, designated aak-2, increases lifespan. Here we show the interaction of aak-2 with other pathways known to control aging in worms. Lifespan extension caused by daf-2/insulin-like signaling mutations was highly dependent on aak-2, as was the lifespan extension caused by over-expression of the deacetylase, sir-2.1. Similarly, there was partial requirement for aak-2 in lifespan extension by mitochondrial mutations (isp-1 and clk-1). Conversely, aak-2 was not required for lifespan extension in mutants lacking germline stem cells (glp-1) or mutants of the eating response (eat-2). These results show that aging is controlled by overlapping but distinct pathways and that AMPK/aak-2 represents a node in a network of evolutionarily conserved biochemical pathways that control aging.  相似文献   

4.
5.
6.
Fisher AL  Lithgow GJ 《Aging cell》2006,5(2):127-138
The orphan nuclear hormone receptor gene daf-12 in Caenorhabditis elegans plays a key role in the regulation of development and determination of adult longevity. To understand the effects of daf-12 on aging we characterized the lifespan of loss-of-function and gain-of-function daf-12 alleles that have been identified on the basis of their effects on dauer development. We find that these mutations have opposing effects on longevity and resistance to oxidative and thermal stress which makes daf-12 the first gene with alleles that can extend or shorten lifespan. We find that the shortened lifespan of the loss-of-function mutation is due to accelerated aging in young adulthood rather than an adverse effect of the mutation on development. Microarray analysis of worms carrying the two alleles revealed a relatively small number of genes differentially expressed between the two genotypes. Comparison of the expression profiles with the profiles associated with dauer formation and long-lived daf-2 mutants revealed that while the profiles are largely different, there is significant overlap among the genes down-regulated, but not up-regulated, in all profiles. Several of these genes down-regulated in multiple long-lived worms have known effects on lifespan, and many of the genes belong to a family of poorly characterized genes that are strongly down-regulated in dauers, daf-2 mutants, and long-lived daf-12 mutants. Our results point to daf-12 modulating aging and stress responses in part through the repression of specific genes, and emphasize the role that the repression of genes that curtail maximal lifespan plays in lifespan determination.  相似文献   

7.
Studies in Caenorhabditis elegans demonstrate that disruption of the daf-2 signaling pathways extends lifespan. Similarities among the daf-2 pathway, insulin-like signaling in flies and yeast, and the mammalian insulin-like growth factor 1 (IGF-1) signaling cascade raise the possibility that modifications to IGF-1 signaling could also extend lifespan in mammals. In fact, growth hormone (GH)/IGF-1-deficient dwarf mice do live significantly longer than their wild-type counterparts. However, multiple endocrine deficiencies and developmental anomalies inherent in these models confound this interpretation. Here, we critique the current mammalian models of GH/IGF-1 deficiency and discuss the actions of GH/IGF-1 on biological aging and lifespan.  相似文献   

8.
Microarray analysis of gene expression with age in individual nematodes   总被引:2,自引:4,他引:2  
Golden TR  Melov S 《Aging cell》2004,3(3):111-124
We compare the aging of wild-type and long-lived C. elegans by gene expression profiling of individual nematodes. Using a custom cDNA array, we have characterized the gene expression of 4-5 individuals at 4 distinct ages throughout the adult lifespan of wild-type N2 nematodes, and at the same ages for individuals of the long-lived strain daf-2(e1370). Using statistical tools developed for microarray data analysis, we identify genes that differentiate aging N2 from aging daf-2, as well as classes of genes that change with age in a similar way in both genotypes. Our novel approach of studying individual nematodes provides practical advantages, since it obviates the use of mutants or drugs to block reproduction, as well as the use of stressful mass-culturing procedures, that have been required for previous microarray studies of C. elegans. In addition, this approach has the potential to uncover the molecular variability between individuals of a population, variation that is missed when studying pools of thousands of individuals.  相似文献   

9.
10.
Mutant Caenorhabditis elegans in which the age-1 and daf-2 genes (involved in insulin-receptor-like signalling) are expressed at low levels exhibit extended lifespan. Wolkow and colleagues recently showed that restricted re-expression of age-1 and daf-2 genes in neurons of these mutants rescues wild-type lifespan as effectively as ubiquitous re-expression. Low levels of insulin-like signalling in neurons might control longevity by enhancing protection against free radical damage. However, in mammalian cells (including neurons) reduced insulin-like signalling is generally thought to be deleterious to antioxidant defence and to neuron survival. Here we discuss the new work and several hypotheses to explain this apparent contradiction.  相似文献   

11.
12.
13.
14.
15.
细胞极性对于细胞的多样性起着很重要的作用。发动蛋白是一个大的GTP酶,作用于胞吞作用和肌动蛋白的动力学过程。C.elegans中发动蛋白的同源基因dyn-1起着维持早期细胞极性的功能。我们对C.elegans中dyn-1基因进行了克隆,并构建到表达载体和RNAi载体中。经IPTG诱导表达得到了约90 kDa的DYN-1融合蛋白。同时,利用RNAi方法研究了dyn-1基因沉默后对三种线虫虫株N2、daf-2(e1370)和daf-16(e1038)寿命的影响。C.elegans在喂食dyn-1 RNAi食物后寿命明显缩短,也会导致严重的不育和胚胎致死。  相似文献   

16.
J. B. Dorman  B. Albinder  T. Shroyer    C. Kenyon 《Genetics》1995,141(4):1399-1406
Recessive mutations in two genes, daf-2 and age-1, extend the lifespan of Caenorhabditis elegans significantly. The daf-2 gene also regulates formation of an alternative developmental state called the dauer. Here we asked whether these two genes function in the same or different lifespan pathways. We found that the longevity of both age-1 and daf-2 mutants requires the activities of the same two genes, daf-16 and daf-18. In addition, the daf-2(e1370); age-1(hx546) double mutant did not live significantly longer than the daf-2 single mutant. We also found that, like daf-2 mutations, the age-1(hx546) mutation affects certain aspects of dauer formation. These findings suggest that age-1 and daf-2 mutations do act in the same lifespan pathway and extend lifespan by triggering similar if not identical processes.  相似文献   

17.
Jensen VL  Albert PS  Riddle DL 《Genetics》2007,177(1):661-666
SDF-9 is a modulator of Caenorhabditis elegans insulin/IGF-1 signaling that may interact directly with the DAF-2 receptor. SDF-9 is a tyrosine phosphatase-like protein that, when mutated, enhances many partial loss-of-function mutants in the dauer pathway except for the temperature-sensitive mutant daf-2(m41). We propose that SDF-9 stabilizes the active phosphorylated state of DAF-2 or acts as an adaptor protein to enhance insulin-like signaling.  相似文献   

18.
19.
20.
Hars ES  Qi H  Ryazanov AG  Jin S  Cai L  Hu C  Liu LF 《Autophagy》2007,3(2):93-95
The role of autophagy in ageing regulation has been suggested based on studies in C. elegans, in which knockdown of the expression of bec-1 (ortholog of the yeast and mammalian autophagy genes ATG6/VPS30 and beclin 1, respectively) shortens lifespan of the daf-2(e1370) mutant C. elegans. However, Beclin1/ATG6 is also known to be involved in other cellular functions in addition to autophagy. In the current study, we knocked down two other autophagy genes, atg-7 and atg-12, in C. elegans using RNAi. We showed that RNAi shortened the lifespan of both wild type and daf-2 mutant C. elegans, providing strong support for a role of autophagy in ageing regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号