首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachidonic acid is an essential constituent of cell membranes that is esterified to the sn-2-position of glycerophospholipids and is released from selected lipid pools by phospholipase cleavage. The released arachidonic acid can be metabolized by three enzymatic pathways: the cyclooxygenase pathway forming prostaglandins and thromboxanes, the lipoxygenase pathway generating leukotrienes and lipoxins, and the cytochrome P450 (cP450) pathway producing epoxyeicosatrienoic acids and hydroxyeicosatetraenoic acids. The present study describes a novel group of cP450 epoxygenase-dependent metabolites of arachidonic acid, termed 2-epoxyeicosatrienoylglycerols (2-EG), including two regioisomers, 2-(11,12-epoxyeicosatrienoyl)glycerol (2-11,12-EG) and 2-(14,15-epoxyeicosatrienoyl)glycerol (2-14,15-EG), which are both produced in the kidney and spleen, whereas 2-11,12-EG is also detected in the brain. Both 2-11,12-EG and 2-14,15-EG activated the two cannabinoid (CB) receptor subtypes, CB1 and CB2, with high affinity and elicited biological responses in cultured cells expressing CB receptors and in intact animals. In contrast, the parental arachidonic acid and epoxyeicosatrienoic acids failed to activate CB1 or CB2 receptors. Thus, these cP450 epoxygenase-dependent metabolites are a novel class of endogenously produced, biologically active lipid mediators with the characteristics of endocannabinoids. This is the first evidence of a cytochrome P450-dependent arachidonate metabolite that can activate G-protein-coupled cell membrane receptors and suggests a functional link between the cytochrome P450 enzyme system and the endocannabinoid system.  相似文献   

2.
All ligands of the epidermal growth factor receptor (EGFR), which has important roles in development and disease, are released from the membrane by proteases. In several instances, ectodomain release is critical for activation of EGFR ligands, highlighting the importance of identifying EGFR ligand sheddases. Here, we uncovered the sheddases for six EGFR ligands using mouse embryonic cells lacking candidate-releasing enzymes (a disintegrin and metalloprotease [ADAM] 9, 10, 12, 15, 17, and 19). ADAM10 emerged as the main sheddase of EGF and betacellulin, and ADAM17 as the major convertase of epiregulin, transforming growth factor alpha, amphiregulin, and heparin-binding EGF-like growth factor in these cells. Analysis of adam9/12/15/17-/- knockout mice corroborated the essential role of adam17-/- in activating the EGFR in vivo. This comprehensive evaluation of EGFR ligand shedding in a defined experimental system demonstrates that ADAMs have critical roles in releasing all EGFR ligands tested here. Identification of EGFR ligand sheddases is a crucial step toward understanding the mechanism underlying ectodomain release, and has implications for designing novel inhibitors of EGFR-dependent tumors.  相似文献   

3.
Epoxyeicosatrienoic acids (EETs), lipid mediators synthesized from arachidonic acid by cytochrome P-450 epoxygenases, are converted by soluble epoxide hydrolase (SEH) to the corresponding dihydroxyeicosatrienoic acids (DHETs). Originally considered as inactive degradation products of EETs, DHETs have biological activity in some systems. Here we examined the capacity of EETs and DHETs to activate peroxisome proliferator-activated receptor-alpha (PPARalpha). We find that among the EET and DHET regioisomers, 14,15-DHET is the most potent PPARalpha activator in a COS-7 cell expression system. Incubation with 10 microM 14,15-DHET produced a 12-fold increase in PPARalpha-mediated luciferase activity, an increase similar to that produced by the PPARalpha agonist Wy-14643 (20 microM). Although 10 microM 14,15-EET produced a threefold increase in luciferase activity, this was abrogated by the SEH inhibitor dicyclohexylurea. 14-Hexyloxytetradec-5(Z)-enoic acid, a 14,15-EET analog that cannot be converted to a DHET, did not activate PPARalpha. However, PPARalpha was activated by 2-(14,15-epoxyeicosatrienoyl)glycerol, which was hydrolyzed and the released 14,15-EET converted to 14,15-DHET. COS-7 cells incorporated 14,15-[3H]DHET from the medium, and the cells also retained a small amount of the DHET formed during incubation with 14,15-[3H]EET. Binding studies indicated that 14,15-[3H]DHET binds to the ligand binding domain of PPARalpha with a Kd of 1.4 microM. Furthermore, 14,15-DHET increased the expression of carnitine palmitoyltransferase 1A, a PPARalpha-responsive gene, in transfected HepG2 cells. These findings suggest that 14,15-DHET, produced from 14,15-EET by the action of SEH, may function as an endogenous activator of PPARalpha.  相似文献   

4.
The ADAM family of disintegrin metalloproteases plays important roles in "ectodomain shedding," the process by which biologically active, soluble forms of cytokines, growth factors, and their receptors are released from membrane-bound precursors. Whereas ADAM8, ADAM15, and MDC-L (ADAM28) are expressed in specific cell types and tissues, their in vivo functions and substrates are not known. By screening a library of synthetic peptides as potential substrates, we show that soluble recombinant forms of these enzymes have similar proteolytic substrate specificity, clearly distinct from that of ADAM17 (TNFalpha-converting enzyme). A number of tumor necrosis factor (TNF) family proteins and CD23 were screened as potential substrates for ectodomain cleavage. We found that ADAM8, ADAM15, and MDC-L, but not ADAM17, catalyzed ectodomain shedding of CD23, the low affinity IgE receptor. ADAM8-dependent, soluble CD23 release required proteolytically active ADAM8, and a physical association of ADAM8 was observed with the membrane-bound form of CD23. The ADAM8-dependent release of sCD23 and the endogenous release from B cell lines could be similarly inhibited by a hydroxamic acid, metalloprotease inhibitor compound. We conclude that ADAM8 could contribute to ectodomain shedding of CD23 and may thus be a potential target for therapeutic intervention in allergy and inflammation.  相似文献   

5.
Ectodomain shedding of the EGF-receptor ligand epigen is mediated by ADAM17   总被引:2,自引:0,他引:2  
Sahin U  Blobel CP 《FEBS letters》2007,581(1):41-44
All ligands of the epidermal growth factor receptor (EGFR), which has important roles in development and disease, are made as transmembrane precursors. Proteolytic processing by ADAMs (a disintegrin and metalloprotease) regulates the bioavailability of several EGFR-ligands, yet little is known about the enzyme responsible for processing the recently identified EGFR ligand, epigen. Here we show that ectodomain shedding of epigen requires ADAM17, which can be stimulated by phorbol esters, phosphatase inhibitors and calcium influx. These results suggest that ADAM17 might be a good target to block the release of bioactive epigen, a highly mitogenic ligand of the EGFR which has been implicated in wound healing and cancer.  相似文献   

6.
Tumor necrosis factor (TNF) has multiple biological effects such as participating in inflammation, apoptosis, and cell proliferation, but the mechanisms of its effects on epithelial cell proliferation have not been examined in detail. At the early stages of liver regeneration, TNF functions as a priming agent for hepatocyte replication and increases the sensitivity of hepatocytes to growth factors such as transforming growth factor alpha (TGFalpha); however, the mechanisms by which TNF interacts with growth factors and enhances hepatocyte replication are not known. Using the AML-12 hepatocyte cell line, we show that TNF stimulates proliferation of these cells through transactivation of the epidermal growth factor receptor (EGFR). The transactivation mechanism involves the release of TGFalpha into the medium through activation of the metalloproteinase TNFalpha-converting enzyme (also known as ADAM 17). Binding of the ligand to EGFR initiates a mitogenic cascade through extracellular signal-regulated kinases 1 and 2 and the partial involvement of protein kinase B. TNF-induced release of TGFalpha and activation of EGFR signaling were inhibited by TNFalpha protease inhibitor-1, an agent that interferes with TNFalpha-converting enzyme activity. We suggest that TNF-induced transactivation of EGFR may provide an early signal for the entry of hepatocytes into the cell cycle and may integrate proliferative and survival pathways at the start of liver regeneration.  相似文献   

7.
8.
Interleukin-8 (IL-8) has been reported to promote tumor cell growth in colon cancer cells after binding to its receptors, which are members of the G-protein coupled receptor (GPCR) family. Recent studies demonstrated that stimulation of GPCR can induce shedding of epidermal growth factor (EGF) ligands via activation of a disintegrin and metalloprotease (ADAM), with subsequent transactivation of the EGF receptor (EGFR). In this study, we investigated mechanisms of cell proliferation and migration stimulated by IL-8 in a human colon carcinoma cell line (Caco2). IL-8 increased DNA synthesis of Caco2 in a dose dependent manner and this was inhibited by ADAM, EGFR kinase, and MEK inhibitors. IL-8 transiently induced EGFR tyrosine phosphorylation after 5-90 min and this was completely inhibited by ADAM inhibitor. Neutralizing antibody against HB-EGF as a key ligand for EGFR also blocked transactivation of EGFR and cell proliferation by IL-8. Since IL-8-induced cell migration was further suppressed by the ADAM inhibitor and the HB-EGF neutralizing antibody, our data indicate that IL-8 induces cell proliferation and migration by an ADAM-dependent pathway, and that HB-EGF plays an important role as the major ligand for this pathway.  相似文献   

9.
Bile acids transactivate the EGF receptor (EGFR) in cholangiocytes. However, the mechanisms by which bile acids transactivate the EGFR remain unknown. Our aims were to examine the effects of bile acids on EGFR activation in human cholangiocyte cell lines KMBC and H-69. Bile acids stimulated cell growth and induced EGFR phosphorylation in a ligand-dependent manner. Although cells constitutively expressed several EGFR ligands, only transforming growth factor-alpha (TGF-alpha) antisera effectively blocked bile acid-induced EGFR phosphorylation. Consistent with the concept that matrix metalloproteinase (MMP) activity is requisite for TGF-alpha membrane release and ligand function, bile acid transactivation of EGFR and cell growth was blocked by an MMP inhibitor. In conclusion, bile acids activate EGFR via a TGF-alpha-dependent mechanism, and this EGFR activation promotes cellular growth.  相似文献   

10.
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.  相似文献   

11.
Loss of cell-matrix adhesion is often associated with acute epithelial injury, suggesting that "anoikis" may be an important contributor to cell death. Resistance against anoikis is a key characteristic of transformed cells. When nontransformed epithelia are injured, activation of the epidermal growth factor (EGF) receptor (EGFR) by paracrine/autocrine release of soluble ligands can induce a prosurvival program, but there is generally evidence for concomitant dedifferentiation. The EGFR ligand, heparin-binding EGF-like growth factor (HB-EGF), is synthesized as a membrane-anchored precursor that can activate the EGFR via juxtacrine signaling or can be released and act as a soluble growth factor. In Madin-Darby canine kidney cells, expression of membrane-anchored HB-EGF increases cell-cell and cell-matrix adhesion. Therefore, these studies were designed to test the effects of juxtacrine HB-EGF signaling upon cell survival and epithelial integrity when cells are denied proper cell-matrix interactions. Cells expressing a noncleavable mutated form of membrane-anchored HB-EGF demonstrated increased survival from anoikis, formed larger cell aggregates, and maintained epithelial characteristics even following prolonged detachment from the substratum. Physical association between membrane-anchored HB-EGF and EGFR was observed. Signaling studies indicated synergistic effects of EGFR activation and phosphatidylinositol 3-kinase signaling to regulate apoptotic and survival pathways. In contrast, although administration of exogenous EGF partially suppressed anoikis in wild type cells, it also led to an increased expression of mesenchymal markers, suggesting dedifferentiation. Taken together, we propose a novel role for membrane-anchored HB-EGF in the cytoprotection of epithelial cells.  相似文献   

12.
13.
p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.  相似文献   

14.
The G protein-coupled receptor P2Y2 nucleotide receptor (P2Y2R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y2Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y2R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-α protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y2R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y2R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.  相似文献   

15.
Binding of the platelet-derived growth factor (PDGF)-B to its receptor PDGFRβ promotes proliferation, migration, and recruitment of pericytes and smooth muscle cells to endothelial cells, serving to stabilize developing blood vessels. The main goals of this study were to determine whether the extracellular domain of the PDGFRβ can be proteolytically released from cell membranes and, if so, to identify the responsible sheddase and determine whether activation of the PDGFRβ stimulates its shedding and potentially that of other membrane proteins. We found that the PDGFRβ is shed from cells by a metalloproteinase and used loss-of-function experiments to identify ADAM10 as the sheddase responsible for constitutive and ionomycin-stimulated processing of the PDGFRβ. Moreover, we showed that ligand-dependent activation of the PDGFRβ does not trigger its own shedding by ADAM10, but instead it stimulates ADAM17 and shedding of substrates of ADAM17, including tumor necrosis factor α and transforming growth factor α. Finally, we demonstrated that treatment of mouse embryonic fibroblasts with PDGF-B triggers a metalloproteinase-dependent cross-talk between the PDGFRβ and the epidermal growth factor receptor (EGFR)/ERK1/2 signaling axis that is also critical for PDGF-B-stimulated cell migration, most likely via ADAM17-dependent release and activation of ligands of the EGFR. This study identifies the principal sheddase for the PDGFRβ and provides new insights into the mechanism of PDGFRβ-dependent signal transduction and cross-talk with the EGFR.  相似文献   

16.
The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER/EGFR ligands. The released ligands activate HER/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer.  相似文献   

17.
Cross-talk between G protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signaling systems is widely established in a variety of normal and transformed cell types. Here, we demonstrate that the EGFR transactivation signal requires metalloproteinase cleavage of epidermal growth factor-like growth factor precursors in fibroblasts, ACHN kidney, and TccSup bladder carcinoma cells. Furthermore, we present evidence that blockade of the metalloproteinase-disintegrin tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17) by a dominant negative ADAM17 mutant prevents angiotensin II-stimulated pro-HB-EGF cleavage, EGFR activation, and cell proliferation in ACHN tumor cells. Moreover, we found that in TccSup cancer cells, the lysophosphatidic acid-induced transactivation signal is mediated by ADAM15, demonstrating that distinct combinations of growth factor precursors and ADAMs (a disintegrin and metalloproteinases) regulate GPCR-EGFR cross-talk pathways in cell lines derived from urogenital cancer. Our data show further that activation of ADAMs results in discrete cellular responses; whereas GPCR agonists promote activation of the Ras/MAPK pathway and cell proliferation via the EGFR in fibroblasts and ACHN cells, EGFR transactivation pathways regulate activation of the survival mediator Akt/protein kinase B and the susceptibility of fibroblasts and TccSup bladder carcinoma cells to proapoptotic signals such as serum deprivation, death receptor stimulation, and the chemotherapeutic drug doxorubicin. Thus, ADAM15 and -17 function as effectors of GPCR-mediated signaling and define critical characteristics of cancer cells.  相似文献   

18.
The transforming growth factor-beta (TGF-beta) regulates hepatocyte growth, inhibiting proliferation and inducing apoptosis. Indeed, escaping from the TGF-beta suppressor actions might be a prerequisite for liver tumour progression. In this work we show that TGF-beta plays a dual role in regulating apoptosis in FaO rat hepatoma cells, since, in addition to its pro-apoptotic effect, TGF-beta also activates survival signals, such as AKT, the epidermal growth factor receptor (EGFR) being required for its activation. TGF-beta induces the expression of the EGFR ligands transforming growth factor-alpha (TGF-alpha) and heparin-binding EGF-like growth factor (HB-EGF) and induces intracellular re-localization of the EGFR. Cells that overcome the apoptotic effects of TGF-beta undergo morphological changes reminiscent of an epithelial-mesenchymal transition (EMT) process. In contrast, TGF-beta does not activate AKT in adult hepatocytes, which correlates with lack of EGFR transactivation and no response to EGFR inhibitors. Although TGF-beta induces TGF-alpha and HB-EGF in adult hepatocytes, these cells show very low expression of TACE/ADAM 17 (TNF-alpha converting enzyme), which is required for EGFR ligand proteolysis and activation. Furthermore, adult hepatocytes do not undergo EMT processes in response to TGF-beta, which might be due, at least in part, to the fact that F-actin re-organization induced by TGF-beta in FaO cells require the EGFR pathway. Finally, results indicate that EGFR transactivation does not block TGF-beta-induced cell cycle arrest in FaO cells, but must be interfering with the pro-apoptotic signalling. In conclusion, TGF-beta is a suppressor factor for adult quiescent hepatocytes, but not for hepatoma cells, where it plays a dual role, both suppressing and promoting carcinogenesis.  相似文献   

19.
Signaling via the epidermal growth factor receptor (EGFR), which has critical roles in development and diseases such as cancer, is regulated by proteolytic shedding of its membrane-tethered ligands. Sheddases for EGFR-ligands are therefore key signaling switches in the EGFR pathway. Here, we determined which ADAMs (a disintegrin and metalloprotease) can shed various EGFR-ligands, and we analyzed the regulation of EGFR-ligand shedding by two commonly used stimuli, phorbol esters and calcium influx. Phorbol esters predominantly activate ADAM17, thereby triggering a burst of shedding of EGFR-ligands from a late secretory pathway compartment. Calcium influx stimulates ADAM10, requiring its cytoplasmic domain. However, calcium influx-stimulated shedding of transforming growth factor alpha and amphiregulin does not require ADAM17, even though ADAM17 is essential for phorbol ester-stimulated shedding of these EGFR-ligands. This study provides new insight into the machinery responsible for EGFR-ligand release and thus EGFR signaling and demonstrates that dysregulated EGFR-ligand shedding may be caused by increased expression of constitutively active sheddases or activation of different sheddases by distinct stimuli.  相似文献   

20.
Arachidonic acid (AA) can be metabolized by cytochrome P450 enzymes to many biologically active compounds including 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), as well as 19- and 20-hydroxyeicosatetraenoic acids (HETEs). These eicosanoids are potent regulators of vascular tone. However, their role in the ischemic myocardium has not been well investigated. In this study, we used a gas chromatographic-mass spectrometric technique to analyze total EETs, DHETs, and 20-HETE released into coronary venous plasma during coronary artery occlusion and reperfusion in anesthetized dogs. Pentafluorobenzyl esters (PFB-esters) of EETs and PFB-esters/trimethylsilyl ethers (TMS-ethers) of DHETs and 20-HETE were detected in the negative ion chemical ionization (NICI) using methane as a reagent gas. Under the conditions used, all four regioisomers of EET eluted from the capillary gas chromatographic column at similar retention times while four regioisomers of DHETs and 20-HETE eluted separately. The detection limits in plasma samples are 5 pg for total EETs, 40 pg for DHET, and 15 pg for 20-HETE. 14,15-DHET is the major regioisomer detected in the plasma samples while other regioisomers of DHETs are probably present at too low a concentration for detection. During the first 5 to 15 min of coronary occlusion, a slight decrease in the concentration of EETs, 14,15-DHET, and 20-HETE from the control values was observed in coronary venous plasma. At 60 min of occlusion, their concentrations significantly increased and remained elevated during 5 to 60 min of reperfusion. The concentrations decreased at 120 min of reperfusion. The NICI GC-MS was successfully used as a sensitive technique to determine cP450 metabolites of AA in plasma during prolonged occlusion-reperfusion periods. Furthermore, the results indicate that these metabolites may play a role in mediating ischemic-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号