首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study examines the role of complement components C3 and C5 in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Larval survival in naive C3(-/-) mice was increased as compared with survival in wild-type mice, whereas C3aR(-/-) and wild-type mice had equivalent levels of larval killing. Larval killing in naive mice was shown to be a coordinated effort between effector cells and C3. There was no difference between survival in wild-type and naive C5(-/-) mice, indicating that C5 was not required during the innate immune response. Naive B cell-deficient and wild-type mice killed larvae at comparable levels, suggesting that activation of the classical complement pathway was not required for innate immunity. Adaptive immunity was equivalent in wild-type and C5(-/-) mice; thus, C5 was also not required during the adaptive immune response. Larval killing was completely ablated in immunized C3(-/-) mice, even though the protective parasite-specific IgM response developed and effector cells were recruited. Protective immunity was restored to immunized C3(-/-) mice by transferring untreated naive serum, but not C3-depleted heat-inactivated serum to the location of the parasites. Finally, immunized C3aR(-/-) mice killed larvae during the adaptive immune response as efficiently as wild-type mice. Therefore, C3 was not required for the development of adaptive immunity, but was required for the larval killing process during both protective innate and adaptive immune responses in mice against larval S. stercoralis.  相似文献   

2.
3.
Interleukin-12 in anti-tumor immunity and immunotherapy   总被引:19,自引:0,他引:19  
Interleukin-12 (IL-12) has an essential role in the interaction between the innate and adaptive arms of immunity by regulating inflammatory responses, innate resistance to infection, and adaptive immunity. Endogenous IL-12 is required for resistance to many pathogens and to transplantable and chemically induced tumors. In experimental tumor models, recombinant IL-12 treatment has a dramatic anti-tumor effect on transplantable tumors, on chemically induced tumors, and in tumors arising spontaneously in genetically modified mice. IL-12 utilizes effector mechanisms of both innate resistance and adaptive immunity to mediate anti-tumor resistance. IFN-gamma and a cascade of other secondary and tertiary pro-inflammatory cytokines induced by IL-12 have a direct toxic effect on the tumor cells or may activate potent anti-angiogenic mechanisms. The stimulating activity of IL-12 on antigen-specific immunity relies mostly on its ability to determine or augment Th1 and cytotoxic T lymphocyte responses. Because of this ability, IL-12 has a potent adjuvant activity in cancer and other vaccines. The promising data obtained in the pre-clinical models of anti-tumor immunotherapy have raised much hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity and modest clinical response observed in the clinical trials point to the necessity to plan protocols that minimize toxicity without affecting the anti-tumor effect of IL-12.  相似文献   

4.
NKT cells are thought of as a bridge between innate and adaptive immunity. In this study, we demonstrate that mouse NKT cells are activated in response to Escherichia coli LPS, and produce IFN-gamma, but not IL-4, although activation through their TCR typically induces both IL-4 and IFN-gamma production. IFN-gamma production by NKT cells is dependent on LPS-induced IL-12 and IL-18 from APC. LPS induced IFN-gamma production by NKT cells does not require CD1d-mediated presentation of an endogenous Ag and exposure to a combination of IL-12 and IL-18 is sufficient to activate them. In mice that are deficient for NKT cells, innate immune cells are activated less efficiently in response to LPS, resulting in the reduced production of TNF and IFN-gamma. We propose that in addition to acting as a bridge to adaptive immunity, NKT cells act as an early amplification step in the innate immune response and that the rapid and complete initiation of this innate response depends on the early production of IFN-gamma by NKT cells.  相似文献   

5.
6.
Interleukin-17A-producing T cells, especially Th17, have been shown to be involved in inflammatory autoimmune diseases and host defense against extracellular infections. However, whether and how IL-17A or IL-17A-producing cells can help protection against intracellular bacteria remains controversial, especially how it regulates the adaptive immunity besides recruitment of neutrophils in the innate immune system. By infecting IL-17A-deficient mice with Listeria monocytogenes, we show in this study that IL-17A is required for the generation of Ag-specific CD8(+) CTL response against primary infection, but not for the generation of memory CD8(+) T cells against secondary challenge. Interestingly, we identify γδT cells, but not conventional CD4(+) Th17 cells, as the main cells for innate IL-17A production during L. monocytogenes infection. Furthermore, γδT cells are found to promote Ag-specific CD8(+) T cell proliferation by enhancing cross-presentation of dendritic cells through IL-17A. Adoptive transfer of Il17a(+/+) γδT cells, but not Il17a(-/-) γδT cells or Il17a(+/+) CD4(+) T cells, were sufficient to recover dendritic cells cross-presentation and defective CD8(+) T cell response in Il17a(-/-) mice. Our findings indicate an important role of infection-inducible IL-17A-producing γδT cells and their derived IL-17A against intracellular bacterial infection, providing a mechanism of IL-17A for regulation of innate and adaptive immunity.  相似文献   

7.
Several direct target genes of the p53 tumor suppressor have been identified within pathways involved in viral sensing, cytokine production, and inflammation, suggesting a potential role of p53 in antiviral immunity. The increasing need to identify immune factors to devise host-targeted therapies against pandemic influenza A virus (IAV) led us to investigate the role of endogenous wild-type p53 on the immune response to IAV. We observed that the absence of p53 resulted in delayed cytokine and antiviral gene responses in lung and bone marrow, decreased dendritic cell activation, and reduced IAV-specific CD8(+) T cell immunity. Consequently, p53(-/-) mice showed a more severe IAV-induced disease compared with their wild-type counterparts. These findings establish that p53 influences the antiviral response to IAV, affecting both innate and adaptive immunity. Thus, in addition to its established functions as a tumor suppressor gene, p53 serves as an IAV host antiviral factor that might be modulated to improve anti-IAV therapy and vaccines.  相似文献   

8.
The biology of IL-12: coordinating innate and adaptive immune responses   总被引:13,自引:0,他引:13  
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.  相似文献   

9.
TNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, is a prominent inducer of proinflammatory cytokines in vitro and in vivo. We previously found that kidney cells display the TWEAK receptor Fn14, and that TWEAK stimulation of mesangial cells and podocytes induces a potent proinflammatory response. Several of the cytokines up-regulated in the kidney in response to TWEAK are instrumental in Lupus nephritis; we therefore hypothesized that TWEAK/Fn14 interactions may be important in the cascade(s) leading to renal damage in systemic Lupus erythematosus. In this study, we analyzed the effects of Fn14 deficiency in the chronic graft-vs-host model of SLE, and the benefits of treatment with an anti-TWEAK mAb in this mouse model. We found that anti-nuclear Ab titers were no different between C57BL/6 Fn14 wild-type and deficient mice injected with alloreactive bm12 splenocytes. However, kidney disease was significantly less severe in Fn14 knockout mice. Furthermore, kidney IgG deposition, IL-6, MCP-1, RANTES, and IP-10, as well as macrophage infiltration, were significantly decreased in Fn14-deficient mice with induced lupus. Similarly, mice with induced Lupus treated with an anti-TWEAK neutralizing mAb had significantly diminished kidney expression of IL-6, MCP-1, IL-10, as well as proteinuria, but similar autoantibody titers, as compared with control-treated mice. We conclude that TWEAK is an important mediator of kidney damage that acts by promoting local inflammatory events, but without impacting adaptive immunity in this experimental LN model. Thus, TWEAK blockade may be a novel therapeutic approach to reduce renal damage in SLE.  相似文献   

10.
Innate immunity provides the first line of response to invading pathogens and a variety of environmental insults. Recent studies identified novel subsets of innate lymphoid cells that are capable of mediating immune responses in mucosal organs. In this paper, we describe a subset of lymphoid cells that is involved in innate type 2 immunity in the lungs. Airway exposure of naive BALB/c or C57BL/6J mice to IL-33 results in a rapid (<12 h) production of IL-5 and IL-13 and marked airway eosinophilia independently of adaptive immunity. In the lungs of nonsensitized naive mice, IL-33-responsive cells were identified that have a lymphoid morphology, lack lineage markers, highly express CD25, CD44, Thy1.2, ICOS, Sca-1, and IL-7Rα (i.e., Lin(-)CD25(+)CD44(hi) lymphoid cells), and require IL-7Rα for their development. Airway exposure of naive mice to a clinically relevant ubiquitous fungal allergen, Alternaria alternata, increases bronchoalveolar lavage levels of IL-33, followed by IL-5 and IL-13 production and airway eosinophilia without T or B cells. This innate type 2 response to the allergen is nearly abolished in mice deficient in IL-33R (i.e., ST2), and the Lin(-)CD25(+)CD44(hi) lymphoid cells in the lungs are required and sufficient to mediate the response. Thus, a subset of innate immune cells that responds to IL-33 and vigorously produces Th2-type cytokines is present in mouse lungs. These cells may provide a novel mechanism for type 2 immunity in the airways and induction of allergic airway diseases such as asthma.  相似文献   

11.
Adaptive immunity in response to virus infection involves the generation of Th1 cells, cytotoxic T cells, and antibodies. This type of immune response is crucial for the clearance of virus infection and for long-term protection against reinfection. Type I interferons (IFNs), the primary innate cytokines that control virus growth and spreading, can influence various aspects of adaptive immunity. The development of antiviral immunity depends on many viral and cellular factors, and the extent to which type I IFNs contribute to the generation of adaptive immunity in response to a viral infection is controversial. Using two strains (Cantell and 52) of the murine respiratory Sendai virus (SeV) with differential abilities to induce type I IFN production from infected cells, together with type I IFN receptor-deficient mice, we examined the role of type I IFNs in the generation of adaptive immunity. Our results show that type I IFNs facilitate virus clearance and enhance the migration and maturation of dendritic cells after SeV infection in vivo; however, soon after infection, mice clear the virus from their lungs and efficiently generate cytotoxic T cells independently of type I IFN signaling. Furthermore, animals that are unresponsive to type I IFN develop long-term anti-SeV immunity, including CD8+ T cells and antibodies. Significantly, this memory response is able to protect mice against challenge with a lethal dose of virus. In conclusion, our results show that primary and secondary anti-SeV adaptive immunities are developed normally in the absence of type I IFN responsiveness.  相似文献   

12.
13.
Cellular immunity to Mycobacterium tuberculosis (Mtb) requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-γ is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT) cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as α-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo.  相似文献   

14.
Nitric oxide (NO), an important effector molecule of the innate immune system, can also regulate adaptive immunity. In this study, the molecular effects of NO on the toll-like receptor signaling pathway were determined using interleukin-12 (IL-12) as an immunologically relevant target gene. The principal conclusion of these experiments is that NO inhibits IL-1 receptor-associated kinase (IRAK) activity and attenuates the molecular interaction between tumor necrosis factor receptor-associated factor-6 and IRAK. As a consequence, the NO donor S-nitroso-N-acetylpenicillamine (SNAP) inhibits lipopolysaccharide (LPS)-induced IL-12 p40 mRNA expression, protein production, and promoter activity in murine macrophages, dendritic cells, and the murine macrophage cell line RAW 264.7. Splenocytes from inducible nitric-oxide synthase-deficient mice demonstrate markedly increased IL-12 p40 protein and mRNA expression compared with wild type splenocytes. The inhibitory action of NO on IL-12 p40 is independent of the cytokine IL-10. The effects of NO can be directly attributed to inhibition of NF-kappaB activation through IRAK-dependent pathways. Accordingly, SNAP strongly reduces LPS-induced NF-kappaB DNA binding to the p40 promoter and inhibits LPS-induced IkappaB phosphorylation. Similarly, NO attenuates IL-1beta-induced NF-kappaB activation. These experiments provide another example of how an innate immune molecule may have a profound effect on adaptive immunity.  相似文献   

15.
We have investigated the primary and secondary immunity generated in vivo by a MHC class I-deficient tumor cell line that expressed CD80 (B7-1). CD80 expression enhanced primary NK cell-mediated tumor rejection in vivo and T cell immunity against secondary tumor challenge. CD80 expression enhanced primary NK cell-mediated tumor rejection, and both NK cell perforin and IFN-gamma activity were critical for the rejection of MHC class I-deficient RMA-S-CD80 tumor cells. This primary rejection process stimulated the subsequent development of specific CTL and Th1 responses against Ags expressed by the MHC class I-deficient RMA-S tumor cells. The development of effective secondary T cell immunity could be elicited by irradiated RMA-S-CD80 tumor cells and was dependent upon NK cells and IFN-gamma in the priming response. Our findings demonstrate a key role for IFN-gamma in innate and adaptive immunity triggered by CD80 expression on tumor cells.  相似文献   

16.
Microglia are resident central nervous system (CNS) macrophages. Theiler's murine encephalomyelitis virus (TMEV) infection of SJL/J mice causes persistent infection of CNS microglia, leading to the development of a chronic-progressive CD4(+) T-cell-mediated autoimmune demyelinating disease. We asked if TMEV infection of microglia activates their innate immune functions and/or activates their ability to serve as antigen-presenting cells for activation of T-cell responses to virus and endogenous myelin epitopes. The results indicate that microglia lines can be persistently infected with TMEV and that infection significantly upregulates the expression of cytokines involved in innate immunity (tumor necrosis factor alpha, interleukin-6 [IL-6], IL-18, and, most importantly, type I interferons) along with upregulation of major histocompatibility complex class II, IL-12, and various costimulatory molecules (B7-1, B7-2, CD40, and ICAM-1). Most significantly, TMEV-infected microglia were able to efficiently process and present both endogenous virus epitopes and exogenous myelin epitopes to inflammatory CD4(+) Th1 cells. Thus, TMEV infection of microglia activates these cells to initiate an innate immune response which may lead to the activation of naive and memory virus- and myelin-specific adaptive immune responses within the CNS.  相似文献   

17.
Invariant Valpha14(+) NKT cells are a specialized CD1-reactive T cell subset implicated in innate and adaptive immunity. We assessed whether Valpha14(+) NKT cells participated in the immune response against enteric Listeria monocytogenes infection in vivo. Using CD1d tetramers loaded with the synthetic lipid alpha-galactosylceramide (CD1d/alphaGC), we found that splenic and hepatic Valpha14(+) NKT cells in C57BL/6 mice were early producers of IFN-gamma (but not IL-4) after L. monocytogenes infection. Adoptive transfer of Valpha14(+) NKT cells derived from TCRalpha degrees Valpha14-Jalpha18 transgenic (TCRalpha degrees Valpha14Tg) mice into alymphoid Rag(null) gamma(c)(null) mice demonstrated that Valpha14(+) NKT cells were capable of providing early protection against enteric L. monocytogenes infection with systemic production of IFN-gamma and reduction of the bacterial burden in the liver and spleen. Rechallenge experiments demonstrated that previously immunized wild-type and Jalpha18null mice, but not TCRalpha(null) or TCRalpha(null) Valpha14Tg mice, were able to mount adaptive responses to L. monocytogenes. These data demonstrate that Valpha14(+) NKT cells are able to participate in the early response against enteric L. monocytogenes through amplification of IFN-gamma production, but are not essential for, nor capable of, mediating memory responses required to sterilize the host.  相似文献   

18.
19.
NOD2/CARD15 mediates innate immune responses to mycobacterial infection. However, its role in the regulation of adaptive immunity has remained unknown. In this study, we examined host defense, T cell responses, and tissue pathology in two models of pulmonary mycobacterial infection, using wild-type and Nod2-deficient mice. During the early phase of aerosol infection with Mycobacterium tuberculosis, Nod2(-/-) mice had similar bacterial counts but reduced inflammatory response on histopathology at 4 and 8 wk postchallenge compared with wild-type animals. These findings were confirmed upon intratracheal infection of mice with attenuated Mycobacterium bovis bacillus Calmette-Guérin. Analysis of the lungs 4 wk after bacillus Calmette-Guérin infection demonstrated that Nod2(-/-) mice had decreased production of type 1 cytokines and reduced recruitment of CD8(+) and CD4(+) T cells. Ag-specific T cell responses in both the spleens and thoracic lymph nodes were diminished in Nod2(-/-) mice, indicating impaired adaptive antimycobacterial immunity. The immune regulatory role of NOD2 was not restricted to the lung since Nod2 disruption also led to reduced type 1 T cell activation following i.m. bacillus Calmette-Guérin infection. To determine the importance of diminished innate and adaptive immunity, we measured bacterial burden 6 mo after aerosol infection with M. tuberculosis and followed a second infected group for assessment of survival. Nod2(-/-) mice had a higher bacterial burden in the lungs 6 mo after infection and succumbed sooner than did wild-type controls. Taken together, these data indicate that NOD2 mediates resistance to mycobacterial infection via both innate and adaptive immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号