首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently the most successful methods for culturing human hematopoietic cells employ some form of perfused bioreactor system. However, these systems do not permit the clonal outgrowth of single progenitor cells. Therefore, we have investigated the use of alginate-poly-L-lysine microencapsulation of human bone marrow, combined with rapid medium exchange, as a system that may overcome this limitation for the purpose of studying the kinetics of progenitor cell growth. We report that a 12 to 24-fold multilineage expansion of adult human bone marow cells was achieved in about 16 to 19 days with this system and that visually identifiable colonies within the capsules were responsible for the increase in cell number. The colonies that represented the majority of cell growth originated from cells that appeared to be present in a frequency of about 1 in 4000 in the encapsulated cell population. These colonies were predominantly granulocytic and contained greater than 40,000 cells each. Large erythroid colonies were also present in the capsules, and they often contained over 10,000 cells each. Time profiles of the erythroid progenitor cell density over time were obtained. Burst-forming units erythroid (BFU-E) peaked around day 5, and the number of morphologically identifiable erythroid cells (erythroblasts through reticulocytes) peaked on day 12. We also report the existence of a critical inoculum density and how growth was improved with the use of conditioned medium derived from a microcapsule culture initiated above the critical inoculum density. Taken together, these results suggest that microencapsulation of human hematopoietic cells allows for outgrowth of progenitor, and possible preprogenitor, cells and could serve as a novel culture system for monitoring the growth and differentiation kinetics of these cells.  相似文献   

2.
To determine whether natural killer (NK) cells are involved in the regulation of hematopoiesis, well-characterized, cell sorter-purified NK cells were incubated with syngeneic bone marrow, and the effect of this interaction on the development of various hematopoietic progenitors was assessed. NK cells were obtained from the peritoneal exudates of CBA/J mice after i.p. infection with live Listeria monocytogenes (LM). These NK cells were nylon wool-nonadherent and were purified by using M1/70, a rat anti-murine macrophage monoclonal antibody, and a fluorescence-activated cell sorter (FACS). Syngeneic bone marrow was incubated overnight with these M1/70-purified NK cells. The cells were then assayed in vitro to determine the effect on the colony formation of the following hematopoietic progenitor cells: the myeloid progenitor that produces mixed granulocyte/macrophage colonies (CFU-G/M), the myeloid progenitor that is committed to macrophage differentiation (CFU-M), and the early erythroid progenitor that is known as the burst-forming unit-erythroid (BFU-E). The marrow cells, after incubation with NK cells, were also injected into lethally irradiated syngeneic recipients to assay for the splenic colony formation capacity of the trilineage myeloid stem cell (CFU-S). Although the formation of BFU-E-, CFU-G/M-, and CFU-M-derived colonies was not adversely affected by the exposure of syngeneic bone marrow to purified NK cells, there was a dramatic decrease in the number of CFU-S-derived colonies. Incubation with NK-depleted cells did not result in an inhibition of colony formation by the CFU-S. Mixing experiments showed that the M1/70-labeled NK cells exerted their effect directly on the CFU-S and not on any accessory cells. The effect of the NK cells on colony formation by the CFU-S could be blocked competitively and selectively by the addition, before incubation, of a classic murine NK tumor target, Yac-1. Another tumor line (WTS) that is poorly recognized by NK cells was less effective in blocking the inhibitory effect of NK cells on CFU-S. The demonstration that purified NK cells can selectively inhibit the development of the tripotential CFU-S may point to the importance of NK cells in the regulation of hematopoiesis, in the development of some types of marrow dysfunction, and in the failure of engraftment of transplanted bone marrow.  相似文献   

3.
Using normal bone marrow as target cells, we assayed the colony-forming efficiency of early and late erythroid progenitor cells and granulocyte-macrophage progenitor cells using several different lots of fetal bovine serum (FBS). There was a marked difference in the ability of these sera to support colony formation, particularly in erythroid colony assays. When adsorbed by activated charcoal, all these sera supported erythroid colony formation more efficiently than before adsorption. There was no significant effect of charcoal adsorption of FBS on granulocyte-macrophage colony formation. Gel-filtration study showed that charcoal adsorption diminished low-molecular-weight fractions by less than 5000 Da. The inhibitory activity of this fraction was heat labile and Pronase sensitive. Concentrated samples obtained from these fractions inhibited erythroid colony formation in a dose-dependent manner. These results suggest that low-molecular-weight inhibitors that are relatively specific to erythropoiesis play a critical role in the lot differences of FBS for erythroid colony formation.  相似文献   

4.
We studied the effects of 1,25-dihydroxyvitamin D3 and other metabolites of vitamin D3 on the maturation in liquid culture and on colony formation in semisolid media of marrow and buffy coat cells from patients with myeloid leukemias and from normal individuals. After incubation with 1,25-dihydroxy-vitamin D3, a proportion of both normal and leukemic myeloid cells resembled cells of the monocyte-macrophage lineage; these cells expressed alpha-naphthylacetate esterase and were able to phagocytize and kill candida organisms. When granulocyte-macrophage progenitor cells (CFU-GM) were incubated with 1,25-dihydroxyvitamin D3, the number of monocyte-macrophage colonies was increased and the number of granulocyte colonies was reduced; megakaryocyte colony formation (CFU-Mk) was inhibited substantially; and there was no effect on erythroid (BFU-E) or multilineage (CFU-GEMM) progenitor cell colony formation. We propose that 1,25-dihydroxyvitamin D3 may induce cells that are normally committed to differentiate along the granulocytic pathways to differentiate instead along the monocyte-macrophage pathway. If these in vitro observations reflect the in vivo activity of 1,25-dihydroxyvitamin D3, it may be involved in the modulation of collagen deposits in the bone marrow.  相似文献   

5.
The pathogenic mechanisms underlying the depressed hematopoietic functions seen in human immunodeficiency virus-infected individuals were explored in rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIVmac). Bone marrow hematopoietic progenitor cell colony formation, both granulocyte/macrophage (CFU-GM) and erythrocyte (BFU-E), was shown to be decreased in number in SIVmac-infected rhesus monkeys. SIVmac was readily isolated from bone marrow cells of infected monkeys and was shown to be harbored in macrophages rather than T lymphocytes. The in vitro infection of normal bone marrow cells by SIVmac inhibited colony formation. A striking in vivo correlation between increased SIVmac load in bone marrow cells and decreased hematopoietic progenitor cell colony growth was also shown. Finally, inhibition of SIVmac replication in bone marrow macrophages resulted in increased progenitor cell colony growth from bone marrow cells. These results suggest that the infection of bone marrow macrophages by the acquired immunodeficiency syndrome (AIDS) virus may contribute to depressed bone marrow hematopoietic progenitor cell growth. Moreover, inhibition of AIDS virus replication in these macrophages might induce significant improvement in hematopoietic function.  相似文献   

6.
7.
We have established permanent lines of nonadherent cells from fresh normal mouse bone marrow in media containing pokeweed mitogen-stimulated spleen cell conditioned medium (PWSCM). These lines continuously produced erythropoietic progenitor cells (detected by their ability to form erythroid bursts in semi-solid medium containing erythropoietin) together with cells having characteristics of the mast cell lineage (as demonstrated by metachromatic staining with toluidine blue, histamine content and membrane receptors for IgE). Sixteen such cell lines have been established in sixteen attempts. Cloning experiments were carried out to determine the nature of the progenitor cell(s) responsible for the permanence of these cultures. When cells were cultured in methylcellulose medium containing PWSCM, colonies were observed which reached macroscopic size after 4 weeks of incubation. Replating of individual primary colonies resulted in secondary colony formation, indicating the presence of progenitor cells with self-renewal potential. Forty-seven primary colonies were picked and their cells were suspended in liquid culture medium containing PWSCM. Of these, twenty-one could be expanded to establish permanently growing sublines. Sixteen of these sublines were found to be composed of both erythroid progenitors and mast cells. In five sublines only mast cells could be seen; none of the sublines appeared to be purely erythroid. Karyotypic analysis of mast cells and of erythroid cells of seven sublines derived from individual colonies which arose in cocultures of male and female cells revealed that the mast cells and erythroid cells were both of the same sex in each of the seven sublines; this demonstrates the single cell origin of each colony and of the two lineages derived from it. We conclude that these nonadherent, factor-dependent cell lines are maintained by self-renewal and differentiation of bipotential progenitor cells apparently restricted to the erythroid and mast cell lineages.  相似文献   

8.
9.
A murine retrovirus (MRSV) containing the src gene of Rous sarcoma virus has been shown to cause an erythroproliferative disease in mice (S. M. Anderson and E. M. Scolnick, J. Virol. 46:594-605, 1983). We now demonstrate that this same virus can transform erythroid progenitor cells in vitro. Infection of fetal liver cells or spleen and bone marrow cells from phenylhydrazine-treated adult mice gave rise to colonies of erythroid cells which grew in methylcellulose under conditions not favorable for the growth of normal erythroid cells. The presence of pp60src in the transformed erythroid cells was demonstrated by an immune complex protein kinase assay. The time course of appearance and subsequent differentiation of erythroid colonies indicated that the target cell for MRSV was a 6- to 8-day burst-forming unit. Differentiation of the erythroid progenitors was not blocked by the presence of pp60src, and the cells retained sensitivity to the hormone erythropoietin. In fact, the transformed cells exhibited increased hormone sensitivity since the number, the size, and the extent of hemoglobinization of the colonies were all increased by the addition of small amounts of erythropoietin. MRSV was not susceptible to restriction by the Fv-2 locus, as MRSV could transform hematopoietic cells from C57BL/6 mice. These results indicate that (i) the erythroid proliferation observed in vivo is caused by a direct effect of MRSV on erythroid progenitors and (ii) the transformed erythroid precursors acquire a growth advantage over uninfected cells without losing the ability to differentiate and respond to physiologic regulators.  相似文献   

10.
When granulocyte colony-stimulating factor (G-CSF), purified to homogeneity from mouse lung-conditioned medium, was added to agar cultures of mouse bone marrcw cells, it stimulated the formation of small numbers of granulocytic colonies. At high concentrations of G-CSF, a small proportion of macrophage and granulocyte-macrophage colonies also developed. G-CSF stimulated colony formation by highly enriched progenitor cell populations obtained by fractionation of mouse fetal liver cells using a fluorescence-activated cell sorter, indicating that G-CSF probably acts directly on target progenitor cells. Granulocytic colonies stimulated by G-CSF were small and uniform in size, and at 7 days of culture were composed of highly differentiated cells. Studies using clonal transfer and the delayed addition of other regulators showed that G-CSF could directly stimulate the initial proliferation of a large proportion of the granulocvte-macrophage progenitors in adult marrow and also the survival and/or proliferation of some multipotential, erythroid, and eosinophil progenitors in fetal liver. However, G-CSF was unable to sustain continued proliferation of these cells to result in colony formation. When G-CSF was mixed with purified granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), the combination stimulated the formation by adult marrow cells of more granulocyte-macrophage colonies than either stimulus alone and an overall size increase in all colonies. G-CSF behaves as a predominantly granulopoietic stimulating factor but has some capacity to stimulate the initial proliferation of the same wide range of progenitor cells as that stimulated by GM-CSF.  相似文献   

11.
Bone marrow stromal cells serve hematopoietic microenvironments where different blood cells are controlled in their growth and differentiation. To characterize functions of stromal cells, 33 bone marrow stromal cells including preadipocytes, endothelial cells, and fibroblasts were established from transgenic mice harboring temperature-sensitive SV40 T-antigen gene and their selective stimulatory abilities to support large colony formation of lineage-specific hematopoietic progenitor cells (erythroid, monocyte/macrophage, granulocyte, and monocyte-granulocyte) were examined. Among established stromal cells, 27 clones showed erythropoietic stimulatory activity in the presence of erythropoietin. On myeloid progenitors, the stromal cells showed lineage-restricted stimulatory activity and a reciprocal relationship was observed between granulocyte formation and macrophage formation, but these activities were not dependent on the amount of produced colony-stimulating factors (CSFs). Our present study with many stromal cells established from bone marrow indicated that each stromal cell in the bone marrow may provide the preferable microenvironment for a rapid expansion of the lineage-restricted progenitor cells in combination with CSFs. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Using long-term culture techniques, it has been shown that stromal cells in the marrow microenvironment are essential for the continued production and self-renewal of hematopoietic stem cells. We previously reported the development of a methylcellulose colony assay for a population of marrow stromal progenitors called CFU-RF. In this paper, a method is described for subculturing cells from individual CFU-RF-derived colonies to allow conditioned medium production (StCM). StCM, prepared in this way, was found to possess an erythroid lineage-specific activity that stimulated the formation of macroscopic erythroid colonies in cultures containing erythropoietin (epo). Using dose-response curves, the KG1 colony assay, and antibody neutralization, it was shown that the activity could not be attributed to interleukin 3 (IL3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). However, it was further shown that a monolayer of stromal cells, which had earlier been producing the erythroid activity, could be stimulated by IL1 to produce granulocytic colony-stimulating activity, but only as long as IL1 was present in the culture medium. These findings indicate a mechanism whereby the same stromal population could be modulated to promote growth and differentiation of different hematopoietic lineages.  相似文献   

13.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

14.
Sources of hematopoietic cells for bone marrow transplantation are limited by the supply of compatible donors, the possibility of viral infection, and autologous (patient) marrow that is depleted from prior chemo- or radiotherapy or has cancerous involvement. Anex vivo system to amplify hematopoietic progenitor cells could increase the number of patients eligible for autologous transplant, allow use of cord blood hematopoietic cells to repopulate an adult, reduce the amount of bone marrow and/or mobilized peripheral blood stem and progenitor cells required for transplantation, and reduce the time to white cell and platelet engraftment. The cloning of hematopoietic growth factors and the identification of appropriate conditions has enabled the development of successfulex vivo hematopoietic cell cultures. Purification systems based on the CD34 marker (which is expressed by the most primitive hematopoietic cells) have proven an essential tool for research and clinical applications. Present methods for hematopoietic cultures (HC) on stromal (i.e. accessory cells that support hematopoiesis) layers in flasks lack a well-controlled growth environment. Several bioreactor configurations have been investigated, and a first generation of reactors and cultures has reached the clinical trial stage. Our research suggests that perfusion conditions improve substantially the performance of hematopoietic reactors. We have designed and tested a perfusion bioreactor system which is suitable for the culture of non-adherent cells (without stromal cells) and readily scaleable for clinical therapies. Eliminating the stromal layer eliminates the need for a stromal cell donor, reduces culture time, and simplifies the culture system. In addition, we have compared the expansion characteristics of both mononuclear and CD34+ cells, since the latter are frequently assumed to give a superior performance for likely transplantation therapies.Abbreviations BFU0-E burst forming unit-erythroid - BM bone marrow - CB cord blood - CFU-C colony forming unit-culture - CFU-E colony forming unit-erythroid - CFU-F colony forming unit-fibroblast - CFU-GEMM colony forming unit-granulocyte, erythroid, macrophage, megakaryocyte - CFU-GM colony forming unit-granulocyte, macrophage - CFU-Mix colony forming unit-mixed (also known as CFU-GEMM) - CML chronic myeloid leukemia - CSF colony stimulating factor - DMSO dimethyl sulfoxide - ECM extracellular matrix - EPO erythropoietin - FL fetal liver - HC hematopoietic culture - LTBMC long-term bone marrow culture - LTC-IC long-term culture initiating cell - LTHC long-term hematopoietic culture - MNC mononuclear cells - PB peripheral blood  相似文献   

15.
We have recently demonstrated that transforming growth factor (TGF)-beta 1 and TGF-beta 2 are potent inhibitors of the growth and differentiation of murine and human hematopoietic cells. The proliferation of primary unfractionated murine bone marrow by interleukin-3 (IL-3) and human bone marrow by IL-3 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was inhibited by TGF-beta 1 and TGF-beta 2, while the proliferation of murine bone marrow by GM-CSF or murine and human marrow with G-CSF was not inhibited. Mouse and human hematopoietic colony formation was differentially affected by TGF-beta 1. In particular, CFU-GM, CFU-GEMM, BFU-E, and HPP-CFC, the most immature colonies, were inhibited by TGF-beta 1, whereas the more differentiated unipotent CFU-G, CFU-M, and CFU-E were not affected. TGF-beta 1 inhibited IL-3-induced growth of murine leukemic cell lines within 24 h, after which the cells were still viable. Subsequent removal of the TGF-beta 1 results in the resumption of normal growth. TGF-beta 1 inhibited the growth of factor-dependent NFS-60 cells in a dose-dependent manner in response to IL-3, GM-CSF, G-CSF, CSF-1, IL-4, or IL-6. TGF-beta 1 inhibited the growth of a variety of murine and human myeloid leukemias, while erythroid and macrophage leukemias were insensitive. Lymphoid leukemias, whose normal cellular counterparts were markedly inhibited by TGF-beta, were also resistant to TGF-beta 1 inhibition. These leukemic cells have no detectable TGF-beta 1 receptors on their cell surface. Last, TGF-beta 1 directly inhibited the growth of isolated Thy-1-positive progenitor cells. Thus, TGF-beta may be an important modulator of normal and leukemic hematopoietic cell growth.  相似文献   

16.
In this study, we demonstrated that tissue inhibitor of metalloproteinases (TIMP) produced by human bone marrow stromal cell line KM-102 had erythroid-potentiating activity (EPA) which stimulates the proliferation of erythroid progenitor cells. We, then, propose a scheme for the bifunctional role of TIMP/EPA in hematopoietic microenvironment, that is, the maintenance of the integrity of bone marrow matrix and the proliferation of erythroid progenitor cells proceeding on the matrix.  相似文献   

17.
Expression of the Thy-1 alloantigen by hematopoietic stem and progenitor cells in post-5-fluorouracil (5-FU) murine bone marrow was investigated. FACS analysis of BDF1 bone marrow stained for Thy-1.2 with a triple-layer amplified labeling technique demonstrated that 35% of the total bone marrow population expressed Thy-1.2 (Thy-1.2+). Two distinct size subpopulations were observed in post-5-FU BDF1 marrow. Thy-1.2+ cells were present in both the large and the small subpopulations. FACS-separated bone marrow cells were also plated in methylcellulose cultures. Ninety percent of all colony-forming cells surviving in vivo administration of 5-FU were Thy-1.2+. Replating of primary hemopoietic colonies and morphologic examination of primary and secondary colonies demonstrated that the most primitive stem cells including "stem" (S) cells were Thy-1.2+. These cells (Thy-1.2+) were capable of self-renewal in vitro and exhibited multiple differentiation potentials in comparison to Thy-1.2-cells, which lacked significant self-renewal capability and were mono- or bipotent progenitor cells. Separation of Thy-1.2+ cells into large or small Thy-1.2+ subpopulations showed that only the large Thy-1.2+ colony-forming cells possessed significant self-renewal capacity. Treatment of BDF1 bone marrow with anti-Thy-1.2 plus complement reduced primary colony formation by 67% and eliminated those colony-forming cells which had extensive self-renewal properties. In the presence of PWMSCM, depletion and reconstitution of T lymphocytes had no effect on primary or secondary colony formation. These data demonstrate that Thy-1 is present on primitive hematopoietic stem cells in post-5-FU bone marrow. In addition, they show that the murine S cell is Thy-1+.  相似文献   

18.
19.
人卵黄囊造血的探讨   总被引:1,自引:0,他引:1  
采用卵黄囊组织切片、涂片的形态学、细胞化学染色、造血干/祖细胞体外培养及CD_(34)单克隆抗体免疫荧光检测等方法研究表明:人卵黄囊中存在造血岛,造血岛内由于造血微环境的特点致使此期造血主要向红系分化。血岛中检测出CD_(34)~ 细胞,比例高于胎肝及成人骨髓,干/祖细胞于体外培养形成红系集落。结论:人胚胎期造血源于卵黄囊。  相似文献   

20.
Anti-TU 67 is a murine monoclonal antibody that recognizes the transferrin receptor. With respect to hematopoietic cells TU 67 is expressed by human multipotent colony-forming cells (CFU-Mix), erythroid progenitor cells (BFU-E and CFU-E) and a fraction of granulocyte/monocyte colony forming cells, but is not expressed by mature hematopoietic cells including erythrocytes, platelets, lymphocytes, and peripheral blood myeloid cells. The TU 67-positive fraction of normal bone marrow, separated by fluorescence-activated cell sorting (FACS) or immune rosettes, contained 87% of the erythroid progenitor cells. Erythroid progenitor cells were enriched up to 50-fold by using a combination of monoclonal antibodies to deplete mature hematopoietic cells, followed by positive selection of BFU-E and CFU-E by TU 67 antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号