首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi have an absolute requirement for K+, but K+ may be partially replaced by Na+. Na+ uptake in Ustilago maydis and Pichia sorbitophila was found to exhibit a fast rate, low Km, and apparent independence of the membrane potential. Searches of sequences with similarity to P-type ATPases in databases allowed us to identify three genes in these species, Umacu1, Umacu2, and PsACU1, that could encode P-type ATPases of a novel type. Deletion of the acu1 and acu2 genes proved that they encoded the transporters that mediated the high-affinity Na+ uptake of U. maydis. Heterologous expressions of the Umacu2 gene in K+ transport mutants of Saccharomyces cerevisiae and transport studies in the single and double Deltaacu1 and Deltaacu2 mutants of U. maydis revealed that the acu1 and acu2 genes encode transporters that mediated high-affinity K+ uptake in addition to Na+ uptake. Other fungi also have genes or pseudogenes whose translated sequences show high similarity to the ACU proteins of U. maydis and P. sorbitophila. In the phylogenetic tree of P-type ATPases all the identified ACU ATPases define a new cluster, which shows the lowest divergence with type IIC, animal Na+,K(+)-ATPases. The fungal high-affinity Na+ uptake mediated by ACU ATPases is functionally identical to the uptake that is mediated by some plant HKT transporters.  相似文献   

2.
Physiological and biochemical studies have suggested that the plant plasma membrane H+-ATPase controls many important aspects of plant physiology, including growth, development, nutrient transport, and stomata movements. We have started the genetic analysis of this enzyme by isolating both genomic and cDNA clones of an H+-ATPase gene from Arabidopsis thaliana. The cloned gene is interrupted by 15 introns, and there is partial conservation of exon boundaries with respect to animal (Na+/K+)- and Ca2+-ATPases. In general, the relationship between exons and the predicted secondary and transmembrane structure of different ATPases with phosphorylated intermediate support a somewhat degenerate correspondence between exons and structural modules. The predicted amino acid sequence of the plant H+-ATPase is more closely related to fungal and protozoan H+-ATPases than to bacterial K+-ATPases or to animal (Na+/K+)-, (H+/K+)-, and Ca2+-ATPases. There is evidence for the existence of at least three isoforms of the plant H+-ATPase gene. These results open the way for a molecular approach to the structure and function of the plant proton pump.  相似文献   

3.
Isolation of novel membrane-associated ATPases, presumably soluble parts of the H+-ATPases, from archaebacteria has been recently reported, and their properties were found to be significantly different from the usual F1-ATPase. In order to assess the relationship of the archaebacterial ATPases to the F1-ATPases and other known ATPases, the amino acid sequence of the alpha subunit of the ATPase from Sulfolobus acidocaldarius, an acidothermophilic archaebacterium, was compared with the sequences of other ATPases. The gene encoding its alpha subunit was cloned from the genomic library of S. acidocaldarius, and the nucleotide sequence was determined. The 591-amino acid sequence deduced from the nucleotide sequence contains a small number of short stretches that shows sequence similarity to the alpha and beta subunits of F1-ATPase. However, the overall similarity is too weak to consider it to be a typical member of the F1-ATPase family when the highly conserved sequences of the F1-ATPase subunits among various organisms are taken into account. Moreover, most of these stretches overlap the consensus sequences that are commonly found in some nucleotide-binding proteins. There is no significant sequence similarity to the ion-translocating ATPases, which form phosphorylated intermediates, such as animal Na+,K+-ATPases. Thus, the S. acidocaldarius ATPase and probably other archaebacterial ATPases also appear to belong to a new group of ion-translocating ATPases that has only a distant relationship to F1-ATPase.  相似文献   

4.
Complete primary structures of both subunits of Na+,K+-ATPase from various sources have been established by a combination of the methods for molecular cloning and protein chemistry. The gene family homologous to the alpha-subunit cDNA of animal Na+,K+-ATPases has been found in the human genome. Some genes of this family encode the known isoforms (alpha I and alpha II) of the Na+,K+-ATPase catalytic subunit. The proteins coded by other genes can be either new isoforms of the Na+,K+-ATPase catalytic subunit or other ion-transporting ATPases. Expression of the genes of this family proceeds in a tissue-specific manner and changes during the postnatal development and neoplastic transformation. The complete exon-intron structure of one of the genes of this family has been established. This gene codes for the form of the catalytic subunit, the existence of which has been unknown. Apparently, all the genes of the discovered family have a similar intron-exon structure. There is certain correlation between the gene structure and the proposed domain arrangement of the alpha-subunit. The results obtained have become the basis for the experiments which prove the existence of the earlier unknown alpha III isoform of the Na+,K+-ATPase catalytic subunit and have made possible the study of its function.  相似文献   

5.
Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice   总被引:15,自引:0,他引:15  
Members of the P-type ATPase ion pump superfamily are found in all three branches of life. Forty-six P-type ATPase genes were identified in Arabidopsis, the largest number yet identified in any organism. The recent completion of two draft sequences of the rice (Oryza sativa) genome allows for comparison of the full complement of P-type ATPases in two different plant species. Here, we identify a similar number (43) in rice, despite the rice genome being more than three times the size of Arabidopsis. The similarly large families suggest that both dicots and monocots have evolved with a large preexisting repertoire of P-type ATPases. Both Arabidopsis and rice have representative members in all five major subfamilies of P-type ATPases: heavy-metal ATPases (P1B), Ca2+-ATPases (endoplasmic reticulum-type Ca2+-ATPase and autoinhibited Ca2+-ATPase, P2A and P2B), H+-ATPases (autoinhibited H+-ATPase, P3A), putative aminophospholipid ATPases (ALA, P4), and a branch with unknown specificity (P5). The close pairing of similar isoforms in rice and Arabidopsis suggests potential orthologous relationships for all 43 rice P-type ATPases. A phylogenetic comparison of protein sequences and intron positions indicates that the common angiosperm ancestor had at least 23 P-type ATPases. Although little is known about unique and common features of related pumps, clear differences between some members of the calcium pumps indicate that evolutionarily conserved clusters may distinguish pumps with either different subcellular locations or biochemical functions.  相似文献   

6.
7.
Physcomitrella patens grew slowly at 600 mm Na+, pH 6.0, affected by the low water potential but without signs of suffering Na+ toxicity. At pH 8.0, tolerance seemed to be lower but it grew at 200 mm Na+, again without signs of Na+ toxicity. The resistance of Physcomitrella cells to the toxic effects of Na+ can be accounted for by their capacity to keep high K+:Na+ ratios and to extrude Na+ by a system that is not dependent on DeltapH. Physcomitrella expresses two P-type ATPases similar in sequence to fungal ENA-type Na+-ATPases. A functional study in yeast demonstrated that one of these ATPases, PpENA1, is an Na+-pump. We also found that P. patens has a plant-type SOS1 Na+/H+ antiporter. We discuss that Na+-ATPases existed in early land plants but that they were lost during the evolution of bryophytes to flowering plants.  相似文献   

8.
The plasma membrane H(+)-ATPase AHA2 of Arabidopsis thaliana, which belongs to the P-type ATPase superfamily of cation-transporting ATPases, pumps protons out of the cell. To investigate the mechanism of ion transport by P-type ATPases we have mutagenized Asp(684), a residue in transmembrane segment M6 of AHA2 that is conserved in Ca(2+)-, Na(+)/K(+)-, H(+)/K(+)-, and H(+)-ATPases and which coordinates Ca(2+) ions in the SERCA1 Ca(2+)-ATPase. We describe the expression, purification, and biochemical analysis of the Asp(684) --> Asn mutant, and provide evidence that Asp(684) in the plasma membrane H(+)-ATPase is required for any coupling between ATP hydrolysis, enzyme conformational changes, and H(+)-transport. Proton pumping by the reconstituted mutant enzyme was completely abolished, whereas ATP was still hydrolyzed. The mutant was insensitive to the inhibitor vanadate, which preferentially binds to P-type ATPases in the E(2) conformation. During catalysis the Asp(684) --> Asn enzyme accumulated a phosphorylated intermediate whose stability was sensitive to addition of ADP. We conclude that the mutant enzyme is locked in the E(1) conformation and is unable to proceed through the E(1)P-E(2)P transition.  相似文献   

9.
Molecular aspects of the diversity of P-type ATPases are explored in this review. From the substrate specificities among different ATPase molecules, the existence of isoforms within a single class of pump becomes evident and it is now recognized as a universal phenomenon. From the phylogenetic analyses using a vast collection of the deduced amino acid sequences for the P-type ATPase subunits, it also becomes evident that the divergence of substrate-specificity occurred early in the evolution and has been conserved ever since. Further extensive analyses identify a set of novel isoforms that retain an ancestral characteristic of the Na+/K+-(H+/K+-)ATPases in invertebrates.  相似文献   

10.
Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the crystals had p1 symmetry. A large number of helical symmetries were observed, so a three-dimensional structure was calculated by averaging both Fourier-Bessel coefficients and real-space structures of data from the different symmetries. The resulting structure clearly reveals cytoplasmic, transmembrane, and extracellular regions of the molecule with densities separately attributable to alpha and beta subunits. The overall shape bears a remarkable resemblance to the E2 structure of rabbit sarcoplasmic reticulum Ca2+-ATPase. After aligning these two structures, atomic coordinates for Ca2+-ATPase were fit to Na+,K+-ATPase, and several flexible surface loops, which fit the map poorly, were associated with sequences that differ in the two pumps. Nevertheless, cytoplasmic domains were very similarly arranged, suggesting that the E2-to-E1 conformational change postulated for Ca2+-ATPase probably applies to Na+,K+-ATPase as well as other P-type ATPases.  相似文献   

11.
P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca2+, Na+, K+ and H+), have been reported. They include reticulum and plasma-membrane Ca2+-ATPases, Na+/K+-ATPase and H+/K+-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg2+ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na+/K+-ATPase α1-isoform, H+/K+-ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H+/K+-ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.  相似文献   

12.
Previous studies in Trypanosoma brucei have shown that intracellular pH homeostasis is affected by inhibitors of H+-ATPases, suggesting a major role for these pumps in this process (Vander-Heyden, N., Wong, J., and Docampo, R., (2000) Biochem. J. 346, 53-62). Here, we report the cloning and sequencing of three genes (TbHA1, TbHA2, and TbHA3) present in the genome of T. brucei that encode proteins with homology to fungal and plant P-type proton-pumping ATPases. Northern and Western blot analyses revealed that these genes are up-regulated in procyclic trypomastigotes. TbHA1, TbHA2, and TbHA3 complemented a Saccharomyces cerevisiae strain deficient in P-type H+-ATPase activity, providing genetic evidence for their function. Indirect immunofluorescence analysis showed that TbHA proteins are localized mainly in the plasma membrane of procyclic forms and in the plasma membrane and flagellum of bloodstream forms. T. brucei H+-ATPase genes were functionally characterized using double-stranded RNA interference methodology. The induction of double-stranded RNA (RNA interference) caused growth inhibition, which was more accentuated in procyclic forms and when expression of all TbHA proteins was decreased. Knockdown of TbHA1 and TbHA3, but not of TbHA2, resulted in cells with a lower steady-state pH(i) and a slower rate of pH(i) recovery from acidification. No evidence was found of an intracellular P-type H+-ATPase activity. These results establish that T. brucei H+-ATPases are plasma membrane enzymes essential for parasite viability.  相似文献   

13.
The physiologic function of an ion transport protein is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na(+),K(+)-ATPase and the H(+),K(+)-ATPases are closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells, and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intramolecular interactions govern trafficking, distribution, and catalytic capacities of these proteins.  相似文献   

14.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

15.
16.
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.  相似文献   

17.
Satoh M  Koyama N 《Anaerobe》2005,11(1-2):115-121
The structural genes for A and B subunits of the V-type Na(+)-ATPase from a facultatively anaerobic alkaliphile (Amphibacillus sp.), strain M-12, were cloned and sequenced. Transformation of Escherichia coli with the genes overexpressed two proteins, which crossreacted with an antiserum against A and B subunits of the V-type Na(+)-ATPase from Enterococcus hirae. The deduced amino acid sequence (594 amino acids; Mr, 66,144) of A subunit of the M-12 enzyme exhibited 73%, 51%, 49% and 53% identities with those of V-type ATPases from E. hirae, Thermus thermophilus, Neurospora crassa and Drosophila melanogaster, respectively. The amino acid sequence (458 amino acids; Mr, 51,308) of B subunit of the M-12 enzyme was 74%, 53%, 52% and 54% identical with those of the ATPases from E. hirae, T. thermophilus, N. crassa and D. melanogaster, respectively. The fact indicates that the amino acid sequences of A and B subunits of the M-12 enzyme exhibit significantly higher homologies with those of the E. hirae Na(+)-ATPase as compared with those of the H(+)-ATPases from T. thermophilus, N. crassa and D. melanogaster.  相似文献   

18.
Inventory of the superfamily of P-type ion pumps in Arabidopsis   总被引:18,自引:0,他引:18  
A total of 45 genes encoding for P-type ATPases have been identified in the complete genome sequence of Arabidopsis. Thus, this plant harbors a primary transport capability not seen in any other eukaryotic organism sequenced so far. The sequences group in all five subfamilies of P-type ATPases. The most prominent subfamilies are P(1B) ATPases (heavy metal pumps; seven members), P(2A) and P(2B) ATPases (Ca(2+) pumps; 14 in total), P(3A) ATPases (plasma membrane H(+) pumps; 12 members including a truncated pump, which might represent a pseudogene or an ATPase-like protein with an alternative function), and P(4) ATPases (12 members). P(4) ATPases have been implicated in aminophosholipid flipping but it is not known whether this is a direct or an indirect effect of pump activity. Despite this apparent plethora of pumps, Arabidopsis appears to be lacking Na(+) pumps and secretory pathway (PMR1-like) Ca(2+)-ATPases. A cluster of Arabidopsis heavy metal pumps resembles bacterial Zn(2+)/Co(2+)/Cd(2+)/Pb(2+) transporters. Two members of the cluster have extended C termini containing putative heavy metal binding motifs. The complete inventory of P-type ATPases in Arabidopsis is an important starting point for reverse genetic and physiological approaches aiming at elucidating the biological significance of these pumps.  相似文献   

19.
P4-ATPases define a eukaryotic subfamily of the P-type ATPases, and are responsible for the transverse flip of specific lipids from the extracellular or luminal leaflet to the cytosolic leaflet of cell membranes. The enzymatic cycle of P-type ATPases is divided into autophosphorylation and dephosphorylation half-reactions. Unlike most other P-type ATPases, P4-ATPases transport their substrate during dephosphorylation only, i.e. the phosphorylation half-reaction is not associated with transport. To study the structural basis of the distinct mechanisms of P4-ATPases, we have determined cryo-EM structures of Drs2p-Cdc50p from Saccharomyces cerevisiae covering multiple intermediates of the cycle. We identify several structural motifs specific to Drs2p and P4-ATPases in general that decrease movements and flexibility of domains as compared to other P-type ATPases such as Na+/K+-ATPase or Ca2+-ATPase. These motifs include the linkers that connect the transmembrane region to the actuator (A) domain, which is responsible for dephosphorylation. Additionally, mutation of Tyr380, which interacts with conserved Asp340 of the distinct DGET dephosphorylation loop of P4-ATPases, highlights a functional role of these P4-ATPase specific motifs in the A-domain. Finally, the transmembrane (TM) domain, responsible for transport, also undergoes less extensive conformational changes, which is ensured both by a longer segment connecting TM helix 4 with the phosphorylation site, and possible stabilization by the auxiliary subunit Cdc50p. Collectively these adaptions in P4-ATPases are responsible for phosphorylation becoming transport-independent.  相似文献   

20.
H+,K(+)-ATPase, Na+,K(+)-ATPase, and Ca(2+)-ATPase belong to the P-type ATPase group. Their molecular mechanisms of energy transduction have been thought to be similar until now. Ca(2+)-ATPase and Na+,K(+)-ATPase are phosphorylated from both ATP and acetyl phosphate (ACP) and dephosphorylated, resulting in active ion transport. However, we found that H+,K(+)-ATPase did not transport proton nor K+ when ACP was used as a substrate, resulting in uncoupling between energy and ion transport. ACP bound competitively to the ATP-binding site of H+,K(+)-ATPase. The hydrolysis of ACP by H+,K(+)-ATPase was stimulated by cytosolic K+, the half-maximal stimulating K+ concentration (K0.5) being 2.5 mM, whereas the hydrolysis of ATP was stimulated by luminal K+, the K0.5 being 0.2 mM. Furthermore, during the phosphorylation from ACP in the absence of K+, the fluorescence intensity of H+,K(+)-ATPase labeled with fluorescein isothiocyanate increased, but those of Na+,K(+)-ATPase and Ca(2+)-ATPase decreased. These results indicate that phosphorylated intermediates of H+,K(+)-ATPase formed from ACP are not rich in energy and that there is a striking difference(s) in the mechanism of energy transduction between H+,K(+)-ATPase and other cation-transporting ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号