首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.  相似文献   

2.
Current evidence suggests that a strong induced CD8 human immunodeficiency virus type 1 (HIV-1)-specific cell mediated immune response may be an important aspect of an HIV vaccine. The response rates and the magnitude of the CTL responses induced by current DNA vaccines in humans need to be improved and cellular immune responses to DNA vaccines can be enhanced in mice by co-delivering DNA plasmids expressing immune modulators. Two reported to work well in the mouse systems are interleukin (IL)-12 and CD40L. We sought to compare these molecular adjuvants in a primate model system. The cDNA for macaque IL-12 and CD40L were cloned into DNA vectors. Groups of cynomolgus macaques were immunized with 2 mg of plasmid expressing SIVgag alone or in combination with either IL-12 or CD40L. CD40L did not appear to enhance the cellular immune response to SIVgag antigen. However, more robust results were observed in animals co-injected with the IL-12 molecular adjuvant. The IL-12 expanded antigen-specific IFN-gamma positive effector cells as well as granzyme B production. The vaccine immune responses contained both a CD8 component as well a CD4 component. The adjuvanted DNA vaccines illustrate that IL-12 enhances a CD8 vaccine immune response, however, different cellular profiles.  相似文献   

3.
Macrophages play a significant role in HIV infection, viral rebound, and the development of AIDS. However, the function of host proteins in viral replication is incompletely characterized in macrophages. Purinergic receptors P2X and P2Y are major components of the macrophage immune response to pathogens, inflammation, and cellular damage. We demonstrate that these receptors are necessary for HIV infection of primary human macrophages. Inhibition of purinergic receptors results in a significant reduction in HIV replication in macrophages. This inhibition is independent of viral strain and is dose dependent. We also identify that P2X(1), P2X(7), and P2Y(1) receptors are involved in viral replication. We show that P2X(1), but not P2X(7) or P2Y(1), is necessary for HIV entry into macrophages. We demonstrate that interaction of the HIV surface protein gp120 with macrophages stimulates an increase in ATP release. Thus, we propose that HIV's binding to macrophages triggers a local release of ATP that stimulates purinergic receptors and facilitates HIV entry and subsequent stages of viral replication. Our data implicate a novel role for a family of host proteins in HIV replication in macrophages and suggest new therapeutic targets to reduce the devastating consequences of HIV infection and AIDS.  相似文献   

4.
Human immunodeficiency virus (HIV-1) has become an important risk factor for human papillomavirus (HPV) infection and the development of HPV associated lesions in the female genital tract. HIV-1 may also increase the oncogenicity of high risk HPV types and the activation of low risk types. The Center for Disease Control and Prevention declared invasive cervical cancer an acquired immunodeficiency virus (AIDS) defining illness in HIV positive women. Furthermore, cervical cancer happens to be the second most common female cancer worldwide. The host's local immune response plays a critical factor in controlling these conditions, as well as in changes in the number of professional antigen-presenting cells, cytokine, and MHC molecules expression. Also, the production of cytokines may determine which arm of the immune response will be stimulated and may influence the magnitude of immune protection. Although there are many studies describing the inflammatory response in HPV infection, few data are available to demonstrate the influence of the HIV infection and several questions regarding the cervical immune response are still unknown. In this review we present a brief account of the current understanding of HIV/HPV co-infection, emphasizing cervical immune response.  相似文献   

5.
At present it is not known which form of immunity would be most effective against infection with human immunodeficiency virus (HIV). To evaluate the possible role of cellular immunity, we examined whether four HIV type 2-exposed but seronegative macaques developed cellular immune responses and determined whether these exposed macaques were resistant to mucosal transmission of simian immunodeficiency virus (SIV). Following intrarectal challenge with SIV, 2 monkeys were protected against detectable SIV replication and another showed suppressed viral replication compared to 14 persistently infected controls. The two protected monkeys demonstrated SIV-specific cytotoxic T lymphocytes before as well as after SIV challenge. Here we provide evidence that activation of the cell-mediated arm of the immune system only, without antibody formation, can control SIV replication in macaques. The results imply that vaccines that stimulate a strong and broad cellular immune response could prevent mucosal HIV transmission.  相似文献   

6.
The mitochondrion is an organelle that regulates various cellular functions including the production of energy and programmed cell death. Aberrant mitochondrial function is often concomitant with various cytopathies and medical disorders. The mitochondrial membrane plays a key role in the induction of cellular apoptosis, and its destabilization, as triggered by both intracellular and extracellular stimuli, results in the release of proapoptotic factors into the cytosol. Not surprisingly, proteins from the human immunodeficiency virus type 1 (HIV) have been implicated in exploiting this organelle to promote the targeted depletion of key immune cells, which assists in viral evasion of the immune system and contributes to the characteristic global immunodeficiency observed during progression of disease. Here we review the mechanisms by which HIV affects the mitochondrion, and suggest that various viral-associated genes may directly regulate apoptotic cell death.  相似文献   

7.
Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log(10) increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.  相似文献   

8.
Vaccine strategies aimed at blocking virus entry have so far failed to induce protection against heterologous viruses. Thus, the control of viral infection and the block of disease onset may represent a more achievable goal of human immunodeficiency virus (HIV) vaccine strategies. Here we show that vaccination of cynomolgus monkeys with a biologically active HIV-1 Tat protein is safe, elicits a broad (humoral and cellular) specific immune response and reduces infection with the highly pathogenic simian-human immunodeficiency virus (SHIV)-89.6P to undetectable levels, preventing the CD4+ T-cell decrease. These results may provide new opportunities for the development of a vaccine against AIDS.  相似文献   

9.
The genome of human immunodeficiency virus (HIV) has an average nucleotide composition strongly biased as compared to the human genome. The consequence of such nucleotide composition on HIV pathogenicity has not been investigated yet. To address this question, we analyzed the role of nucleotide bias of HIV-derived nucleic acids in stimulating type-I interferon response in vitro. We found that the biased nucleotide composition of HIV is detected in human cells as compared to humanized sequences, and triggers a strong innate immune response, suggesting the existence of cellular immune mechanisms able to discriminate RNA sequences according to their nucleotide composition or to detect specific secondary structures or linear motifs within biased RNA sequences. We then extended our analysis to the entire genome scale by testing more than 1300 HIV-1 complete genomes to look for an association between nucleotide composition of HIV-1 group M subtypes and their pathogenicity. We found that subtype D, which has an increased pathogenicity compared to the other subtypes, has the most divergent nucleotide composition relative to the human genome. These data support the hypothesis that the biased nucleotide composition of HIV-1 may be related to its pathogenicity.  相似文献   

10.
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by a reactivation of the polyomavirus JC (JCV) within a setting of immunosuppression. The nature of the immune response that contains replication of this virus is unknown. We have explored JCV-specific cellular immune responses in patients with PML and control subjects. JCV antigen-stimulated peripheral blood mononuclear cells (PBMC) of four human immunodeficiency virus (HIV)-infected patients who were survivors of PML and one HIV-uninfected patient recently diagnosed with PML lysed autologous B-lymphoblastoid cell lines expressing either the JCV T regulatory protein or the VP1 major capsid protein. This lysis was mediated by CD8(+) T lymphocytes and was major histocompatibility complex class I restricted. These cells were therefore cytotoxic T lymphocytes (CTL). JCV-specific CTL could not be detected in PBMC of three HIV-infected PML patients who had progressive neurologic disease and an eventual fatal outcome. These data suggest that the JCV-specific cellular immune response may play a crucial role in the containment of PML. This finding may also prove useful as a favorable prognostic marker in the clinical management of these patients.  相似文献   

11.
Pathogenesis of human immunodeficiency virus infection.   总被引:50,自引:0,他引:50  
The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic.  相似文献   

12.
To explore the efficacy of novel complementary prime-boost immunization regimens in a nonhuman primate model for HIV infection, rhesus monkeys primed by different DNA vaccines were boosted with virus-like particles (VLP) and then challenged by repeated low-dose rectal exposure to simian immunodeficiency virus (SIV). Characteristic of the cellular immune response after the VLP booster immunization were high numbers of SIV-specific, gamma interferon-secreting cells after stimulation with inactivated SIV particles, but not SIV peptides, and the absence of detectable levels of CD8(+) T cell responses. Antibodies specific to SIV Gag and SIV Env could be induced in all animals, but, consistent with a poor neutralizing activity at the time of challenge, vaccinated monkeys were not protected from acquisition of infection and did not control viremia. Surprisingly, vaccinees with high numbers of SIV-specific, gamma interferon-secreting cells were infected fastest during the repeated low-dose exposures and the numbers of these immune cells in vaccinated macaques correlated with susceptibility to infection. Thus, in the absence of protective antibodies or cytotoxic T cell responses, vaccine-induced immune responses may increase the susceptibility to acquisition of immunodeficiency virus infection. The results are consistent with the hypothesis that virus-specific T helper cells mediate this detrimental effect and contribute to the inefficacy of past HIV vaccination attempts (e.g., STEP study).  相似文献   

13.
In the present study, we found a topoisomerase I (topo I) activity in two strains of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) particles. The topo I activity was located in the EIAV cores and differed from the cellular topo I in its ionic requirements and response to ATP, indicating that these were two distinct forms of this enzyme. Topo I activity was removed from the viral lysates and viral cores by anti-topo I antiserum. The only protein recognized by this antiserum was an 11.5 kd protein in HIV lysate and 11 kd in EIAV lysate. We showed that the 11 kd protein recognized by the anti-topo I antiserum is the EIAV p11 nucleocapsid protein. Furthermore, purified topo I protein blocked the binding of the antibodies to the p11 protein and vice versa, purified p11 protein blocked the binding of these antibodies to the cellular topo I. These results suggest that the EIAV p11 nucleocapsid protein and the cellular topo I share similar epitopes.  相似文献   

14.
Primary human immunodeficiency virus (HIV) infection is characterized by an initial exponential increase of viral load in peripheral blood reaching a peak, followed by a rapid decline to the viral setpoint. Although the target-cell-limited model can account for part of the viral kinetics observed early in infection [Phillips, 1996. Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 271 (5248), 497-499], it frequently predicts highly oscillatory kinetics after peak viremia, which is not typically observed in clinical data. Furthermore, the target-cell-limited model is unable to predict long-term viral kinetics, unless a delayed immune effect is assumed [Stafford et al., 2000. Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203 (3), 285-301]. We show here that extending the target-cell-limited model, by implementing a saturation term for HIV-infected cell loss dependent upon infected cell levels, is able to reproduce the diverse observed viral kinetic patterns without the assumption of a delayed immune response. Our results suggest that the immune response may have significant effect on the control of the virus during primary infection and may support experimental observations that an anti-HIV immune response is already functional during peak viremia.  相似文献   

15.
Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIV(mac)239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat(28-35)SL8) and the Mamu-B*17-restricted response (Nef(165-173)IW9) typically select for viral escape variants in early SIV(mac)239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat(28-35)SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection.  相似文献   

16.

Background

Innate immune responses have recently been appreciated to play an important role in the pathogenesis of HIV infection. Whereas inadequate innate immune sensing of HIV during acute infection may contribute to failure to control and eradicate infection, persistent inflammatory responses later during infection contribute in driving chronic immune activation and development of immunodeficiency. However, knowledge on specific HIV PAMPs and cellular PRRs responsible for inducing innate immune responses remains sparse.

Methods/Principal Findings

Here we demonstrate a major role for RIG-I and the adaptor protein MAVS in induction of innate immune responses to HIV genomic RNA. We found that secondary structured HIV-derived RNAs induced a response similar to genomic RNA. In primary human peripheral blood mononuclear cells and primary human macrophages, HIV RNA induced expression of IFN-stimulated genes, whereas only low levels of type I IFN and tumor necrosis factor α were produced. Furthermore, secondary structured HIV-derived RNA activated pathways to NF-κB, MAP kinases, and IRF3 and co-localized with peroxisomes, suggesting a role for this organelle in RIG-I-mediated innate immune sensing of HIV RNA.

Conclusions/Significance

These results establish RIG-I as an innate immune sensor of cytosolic HIV genomic RNA with secondary structure, thereby expanding current knowledge on HIV molecules capable of stimulating the innate immune system.  相似文献   

17.
Recombinant human immunodeficiency virus (HIV)/hepatitis B surface antigen (HBsAg) subviral particles of dual antigenicity and immunogenicity were obtained by fusing 84 amino acids of the HIV type 1 external envelope glycoprotein within the pre-S2 part of the hepatitis B middle protein (M.-L. Michel, M. Mancini, E. Sobczak, V. Favier, D. Guétard, E.-M. Bahraoui, and P. Tiollais, Proc. Natl. Acad. Sci. USA 85:7957-7961, 1988). We now describe the humoral and cellular immune response of rhesus monkeys immunized with these hybrid particles. Macaque antisera raised by subcutaneous injections of the HIV/HBsAg particles were shown to be specific for HIV in peptide-binding assays. Moreover, we were able to generate in these vaccinated animals a T-cell-proliferative response to both parts of the hybrid particle, i.e., HIV and HBsAg. These results establish the presence of a T-cell epitope in this HIV segment, which has been shown previously (L.A. Lasky, G. Nakamura, D. H. Smith, C. Fennie, C. Shimasaki, E. Patzer, P. Berman, T. Gregory, and D. J. Capon, Cell 50:975-985, 1987) to be an important domain involved in the binding of the virus to its cellular receptor, the CD4 molecule. This work demonstrates the feasibility of using the HBsAg subviral particle as a carrier protein for the presentation of foreign immunogenic epitopes to the immune system.  相似文献   

18.
19.
20.
HIV-1 Tat-based vaccines: from basic science to clinical trials   总被引:10,自引:0,他引:10  
Vaccination against human immunodeficiency virus (HIV)-1 infection requires candidate antigen(s) (Ag) capable of inducing an effective, broad, and long-lasting immune response against HIV-1 despite mutation events leading to differences in virus clades. The HIV-1 Tat protein is more conserved than envelope proteins, is essential in the virus life cycle and is expressed very early upon virus entry. In addition, both humoral and cellular responses to Tat have been reported to correlate with a delayed progression to disease in both humans and monkeys. This suggested that Tat is an optimal target for vaccine development aimed at controlling virus replication and blocking disease onset. Here are reviewed the results of our studies including the effects of the Tat protein on monocyte-derived dendritic cells (MDDCs) that are key antigen-presenting cells (APCs), and the results from vaccination trials with both the Tat protein or tat DNA in monkeys. We provide evidence that the HIV-1 Tat protein is very efficiently taken up by MDDCs and promotes T helper (Th)-1 type immune responses against itself as well as other Ag. In addition, a Tat-based vaccine elicits an immune response capable of controlling primary infection of monkeys with the pathogenic SHIV89.6P at its early stages allowing the containment of virus spread. Based on these results and on data of Tat conservation and immune cross-recognition in field isolates from different clades, phase I clinical trials are being initiated in Italy for both preventive and therapeutic vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号