首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses.  相似文献   

2.
Context: Yin Yang-1 (YY-1) is implicated in the pathogenesis of lung cancer which can be complicated with idiopathic pulmonary fibrosis (IPF).

Objective: The aim of the study was to investigate whether YY-1 is involved in the pathogenesis of IPF and whether represents a common pathogenetic pathway which could explain the coexistence of these disorders.

Materials and methods: Lung tissue from 52 patients (37 with IPF and 15 controls) and bronchoalveolar lavage fluid (BALF) from 34 patients (25 with IPF and 9 controls) were studied and YY-1 mRNA expression was evaluated by real-time PCR.

Results: YY-1 was expressed in 8% (3/37) of IPF patients and in 6% (1/15) of healthy controls in tissue samples. In addition, 12% (3/25) of IPF patients and 33% (3/9) of healthy controls have expressed YY-1 gene in BALF samples. However, no statistical significant difference in mRNA expression between patients and controls has been detected in both tissue and BAL fluid samples.

Discussion and conclusion: Our results do not support the hypothesis of YY-1 involvement in IPF. However, similar expression of YY-1 gene in two biological samples cannot exclude a possible role of this polymorphic gene in the pathway of IPF. Further studies in a larger scale of patients are needed.  相似文献   

3.
Aging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age‐dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle‐aged mice compared to younger animals. More importantly, older mice expose to lung injury are characterized by deficient autophagic response and reduced selective targeting of mitochondria for autophagy (mitophagy). Fibroblast to myofibroblast differentiation (FMD) is an important feature of pulmonary fibrosis in which the profibrotic cytokine TGFβ1 plays a pivotal role. Promotion of autophagy is necessary and sufficient to maintain normal lung fibroblasts’ fate. On the contrary, FMD mediated by TGFβ1 is characterized by reduced autophagy flux, altered mitophagy, and defects in mitochondrial function. In accord with these findings, PINK1 expression appeared to be reduced in fibrotic lung tissue from bleomycin and a TGFβ1‐adenoviral model of lung fibrosis. PINK1 expression is also reduced in the aging murine lung and biopsies from IPF patients compared to controls. Furthermore, deficient PINK1 promotes a profibrotic environment. Collectively, this study indicates that an age‐related decline in autophagy and mitophagy responses to lung injury may contribute to the promotion and/or perpetuation of pulmonary fibrosis. We propose that promotion of autophagy and mitochondrial quality control may offer an intervention against age‐related fibrotic diseases.  相似文献   

4.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non‐resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro‐fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non‐resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ‐induced pro‐fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ‐induced lung fibroblast activation in 2D and 3D co‐cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.  相似文献   

5.

Background  

Prostanoids are known to participate in the process of fibrogenesis. Because lung fibroblasts produce prostanoids and are believed to play a central role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), we hypothesized that fibroblasts (HF) cultured from the lungs of patients with IPF (HF-IPF) have an altered balance between profibrotic (thromboxane [TX]A2) and antifibrotic (prostacyclin [PGI2]) prostaglandins (PGs) when compared with normal human lung fibroblasts (HF-NL).  相似文献   

6.
7.
Acute interstitial pneumonia (AIP) is an idiopathic pulmonary disease featuring rapid progressive dyspnea and respiratory failure. These symptoms typically develop within several days or weeks in patients without any pre-existing lung disease or external chest disease. Thymocyte differentiation antigen-1 (THY1) has been reported to have an effect on lung fibroblast proliferation and fibrogenic signaling. In this study, the mechanism of THY1 in AIP in influencing pulmonary fibrosis in terms of lung fibroblast proliferation and apoptosis was examined. An AIP mouse model with the pathological changes of lung tissues observed was established to identify the role of THY1 in the pathogenesis of AIP. The expression of THY1, a key regulator of the WNT pathway β-catenin and fibroblasts markers MMP-2, Occludin, α-SMA and Vimentin were determined. Lung fibroblasts of mice were isolated, in which THY1 expression was altered to identify roles THY1 plays in cell viability and apoptosis. A TOP/TOPflash assay was utilized to determine the activation of WNT pathway. Decrement of pulmonary fibrosis was achieved through THY1 up-regulation. The expression of MMP-2, Occludin, α-SMA, Vimentin and β-catenin, and the extent of β-catenin phosphorylation, significantly decreased, thereby indicating that THY1 overexpression inactivated WNT. Cell proliferation was inhibited and apoptosis was accelerated in lung fibroblasts transfected with vector carrying overexpressed THY1. Altogether, this study defines the potential role of THY1 in remission of AIP, via the upregulation of THY1, which renders the WNT pathway inactive. This inactivation of the WNT signaling pathway could alleviate pulmonary fibrosis by reducing lung fibroblast proliferation in AIP.

Abbreviations: AIP: Acute interstitial pneumonia; ILDs: interstitial lung diseases; DAD: diffuse alveolar damage; SPF: specific-pathogen-free; NC: negative control; HCMV: human cytomegalovirus; HE: Hematoxylin-eosin; RIPA: radio-immunoprecipitation assay; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; BSA: bovine serum albumin; HRP: horseradish peroxidase; ECL: electrochemiluminescence; FBS: fetal bovine serum; DMSO: dimethyl sulfoxide; OD: optical density  相似文献   


8.

Background

Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls.

Methods

Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MCT and MCTC mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β.

Results

In the alveolar parenchyma in lungs from patients with CF, MCTC numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MCTC and MCT cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MCTC density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MCTC correlated positively with the degree of fibrosis. The increased density of MCTC, as well as MCTC expression of TGF-β, correlated negatively with patient lung function.

Conclusions

The present study reveals that altered mast cell populations, with increased numbers of MCTC in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.  相似文献   

9.
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually fatal lung disease that lacking effective interventions. It is well known that aberrant activation of transforming growth factor-beta1 (TGF-β1) frequently promotes epithelial-mesenchymal transition (EMT) in IPF. Metastasis-associated gene 1 (MTA1) has identified as an oncogene in several human tumours, and aberrant MTA1 expression has been related to the EMT regulation. However, its expression and function in IPF remain largely unexplored. Using a combination of in vitro and in vivo studies, we found that MTA1 was significantly up-regulated in bleomycin-induced fibrosis rats and TGF-β1-treated alveolar type Ⅱ epithelial (RLE-6TN) cells. Overexpression of MTA1 induced EMT of RLE-6TN cells, as well as facilitates cell proliferation and migration. In contrast, knockdown of MTA1 reversed TGF-β1-induced EMT of RLE-6TN cells. The pro-fibrotic action of MTA1 was mediated by increasing Snail expression through up-regulating Snail promoter activity. Moreover, inhibition of MTA1 effectively attenuated bleomycin-induced fibrosis in rats. Additionally, we preliminarily found astragaloside IV (ASV), which was previously validated having inhibitory effects on TGF-β1-induced EMT, could inhibit MTA1 expression in TGF-β1-treated RLE-6TN cells. These findings highlight the role of MTA1 in TGF-β1-mediated EMT that offer novel strategies for the prevention and treatment of IPF.  相似文献   

10.
Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic interstitial pneumonia limited to the lung and characterized by a fibroproliferative response with only minor signs of inflammation, which almost always causes rapid fibrotic destruction of the lung. In this study, we investigated genomic instability in IPF, using microsatellite DNA analysis, aiming to detect any specific genetic alterations for this disease. We used 40 highly polymorphic microsatellite DNA markers, in multiplex PCR assays, to examine 52 sputum specimens from IPF patients versus correspondent venous blood. Loss of heterozygosity (LOH) was found in 20 (38.5%) patients in at least one locus. These alterations were found on markers previously associated with lung cancer located on 1p34.3, 3p21.32-p21.1, 5q32-q33.1, 9p21 and 17p13.1 where MYCL1, FHIT, SPARC, p16Ink4 and TP53 genes have been mapped respectively. These data provide new insights into IPF pathogenesis and a new perspective for its correlation with lung cancer.  相似文献   

11.
目的: 探究干燥综合征合并特发性肺纤维化患者血清中miRNA表达谱之间的差异关系。方法: 选择在云南省第一人民医院确诊为干燥综合征的3例患者作为对照组,平均年龄为(55.67±4.78) 岁,病程为(10.67±1.70)月;3例干燥综合征合并特发性肺纤维化患者作为观察组,平均年龄为(57.67±3.68) 岁,病程为(11.00±2.45) 月;6例患者均为女性。两组基本资料没有差异(P>0.05)。利用芯片检测两组患者血清中miRNA表达谱的差异。通过GO富集分析,筛选出13个免疫细胞功能相关的聚类;表达差异明显的基因集中于免疫调节的信号通路。采用qRT-PCR验证其中5个表达有差异的miRNA。结果: 芯片检测结果共筛选出差异表达基因13个,其中6个miRNA上调:hsa-miR-6740-5p,hsa-miR-4507,hsa-miR-6775-5p,hsa-miR-4281,hsa-miR-4459,hsa-miR-6089,7个miRNA下调:hsa-miR-6873-3p,hsa-miR-4290,hsa-miR-6858-3p,hsa-miR-574-3p,hsa-miR-92b-3p,hsa-miR-3151-3p,hsa-miR-6886-3p。qRT-PCR结果验证了5个最明显的差异miRNA,结果和芯片趋势一致,差异显著,具有统计学意义。结论: 干燥综合征与干燥综合征合并特发性肺纤维化血清中miRNA表达存在差异,其中miR-6886-3p,miR-6873-3p,miR-574-3p,miR-6740-5p和miR-4507特异性和敏感度较高,可能作为干燥综合征特发性肺纤维化区别于原发性干燥综合征的生物标志物。  相似文献   

12.
Heavy metals, such as lead (Pb2+), are usually accumulated in human bodies and impair human''s health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity.  相似文献   

13.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal pulmonary disorder, and its pathology is characterized by parenchymal fibrosis. To investigate the characteristics of fibroblasts in IPF, we obtained eight fibroblast cell lines from lungs with IPF and eight lines from normal lungs. We found that the fibroblasts from IPF spontaneously produced higher amounts of type I collagen and had lower expression levels of SOCS1 than fibroblasts from normal lung. By using mouse fibroblasts, we demonstrated the causal relationship between them: the deficiency of SOCS1 in fibroblasts resulted in increased collagen production, whereas overexpression of SOCS1 suppressed collagen production. IFN-gamma suppressed spontaneous collagen production even in SOCS1-deficient fibroblasts, indicating that IFN-gamma inhibition is SOCS1-independent. In contrast, IFN-gamma suppressed the increase of collagen production induced by IL-4 in wild type fibroblasts but not SOCS1-deficient fibroblasts, suggesting IFN-gamma acted exclusively via SOCS1 in this case. Following IFN-gamma stimulation, the amount of SOCS1 mRNA expressed by IPF fibroblasts was comparable to that of normal fibroblasts. Thus, the extent of SOCS1 increase after stimulation by IFN-gamma was significantly higher in IPF fibroblasts. The extent to which IFN-gamma inhibited collagen production was also larger in IPF fibroblasts than in normal fibroblasts. These results suggest that the exaggerated production of collagen observed in fibroblasts from IPF is causally related to the diminished expression of SOCS1, and IPF fibroblasts are more susceptible to IFN-gamma because of decreased expression of SOCS1.  相似文献   

14.
Inflammaging, characterized by an increase in low‐grade chronic inflammation with age, is a hallmark of aging and is strongly associated with various age‐related diseases, including chronic liver disease (CLD) and hepatocellular carcinoma (HCC). Because necroptosis is a cell death pathway that induces inflammation through the release of DAMPs, we tested the hypothesis that age‐associated increase in necroptosis contributes to chronic inflammation in aging liver. Phosphorylation of MLKL and MLKL oligomers, markers of necroptosis, as well as phosphorylation of RIPK3 and RIPK1 were significantly upregulated in the livers of old mice relative to young mice and this increase occurred in the later half of life (i.e., after 18 months of age). Markers of M1 macrophages, expression of pro‐inflammatory cytokines (TNFα, IL6 and IL1β), and markers of fibrosis were all significantly upregulated in the liver with age and the change in necroptosis paralleled the changes in inflammation and fibrosis. Hepatocytes and liver macrophages isolated from old mice showed elevated levels of necroptosis markers as well as increased expression of pro‐inflammatory cytokines relative to young mice. Short‐term treatment with the necroptosis inhibitor, necrostatin‐1s (Nec‐1s), reduced necroptosis, markers of M1 macrophages, fibrosis, and cell senescence as well as reducing the expression of pro‐inflammatory cytokines in the livers of old mice. Thus, our data show for the first time that liver aging is associated with increased necroptosis and necroptosis contributes to chronic inflammation in the liver, which in turn appears to contribute to liver fibrosis and possibly CLD.  相似文献   

15.

Objectives

Methamphetamine (MA) abuse evokes pulmonary toxicity. The aim of our study is to investigate if autophagy is induced by MA and if autophagy‐initiated apoptosis in alveolar epithelial cells is involved in MA‐induced chronic pulmonary toxicity.

Materials and Methods

The rats in Control group and MA group were tested by Doppler and HE staining. The alveolar epithelial cells were treated with MA, following by western blot, RT‐PCR and immunofluorescence assay.

Results

Chronic exposure to MA resulted in lower growth ratio of weight and in higher heart rate and peak blood flow velocity of the main pulmonary artery of rats. MA induced infiltration of inflammatory cells in lungs, more compact lung parenchyma, thickened alveolar septum and reduction in the number of alveolar sacs. In alveolar epithelial cells, the autophagy marker LC3 and per cent of cells containing LC3‐positive autophagosome were significantly increased. MA dose dependently suppressed the phosphorylation of mTOR to inactivate mTOR, elicited autophagy regulatory proteins LC3 and Beclin‐1, accelerated the transformation from LC3 I to LC3 II and initiated apoptosis by decreasing Bcl‐2 and increasing Bax, Bax/Bcl‐2 and cleaved Caspase 3. The above results suggest that sustained autophagy was induced by long‐term exposure to MA and that the increased Beclin‐1 autophagy initiated apoptosis in alveolar epithelial cells.

Conclusions

Concurrence of autophagy with apoptosis in alveolar epithelial cells contributes to chronic pulmonary toxicity induced by MA.
  相似文献   

16.
10-hydroxycamptothecin (HCPT), a natural plant extract, exerts anticancer capacity. HCPT has been reported to induce apoptosis and autophagy in human cancer cells. The interaction between autophagy and apoptosis induced by HCPT and the molecular mechanism in bladder cancer cells were investigated in this study. Our results confirmed that HCPT suppressed cell viability and migration and caused cell-cycle arrest in T24 and 5637. Then, we used Z-VAD(OMe)-FMK to clarify that apoptosis induced by HCPT was mediated by caspase. Moreover, HCPT boosted autophagy through activating the AMPK/mTOR/ULK1 pathway. Blocking autophagy by 3-methyladenine, the adenosine monophosphate-activated protein kinase (AMPK) inhibitor dorsomorphin and siATG7 reversed HCPT-induced cytotoxicity. Conversely, rapamycin and the AMPK activator AICAR enhanced growth inhibition and cell apoptosis, suggesting that autophagy played a proapoptosis role. Taken together, our findings showed that HCPT-induced autophagy mediated by the AMPK pathway in T24 and 5637 cell lines, which reinforced the apoptosis, indicating that HCPT together with autophagy activator would be a novel strategy for clinical treatment in bladder cancer.  相似文献   

17.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM‐induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM‐induced expression of α‐smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor‐β1, interleukin‐1β, and tumor necrosis factor‐α in the lungs of BLM‐stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM‐induced murine model.  相似文献   

18.
Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin‐related protein‐1 (Drp1)‐mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro‐apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin‐induced mitochondrial fission and apoptosis in myofibroblasts. Drp1‐associated genes, such as Bcl‐2‐associated X protein, cytochrome c, tumour suppressor gene p53 and p53‐up‐regulated modulator of apoptosis, were highly up‐regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1‐dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment.  相似文献   

19.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号