首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis shikimate dehydrogenase (MtbSD) catalyzes the fourth reaction in the shikimate pathway, the NADPH-dependent reduction of 3-dehydroshikimate. To gather information on the kinetic mechanism, initial velocity patterns, product inhibition, and primary deuterium kinetic isotope effect studies were performed and the results suggested a steady-state ordered bi-bi kinetic mechanism. The magnitudes of both primary and solvent kinetic isotope effects indicated that the hydride transferred from NADPH and protons transferred from the solvent in the catalytic cycle are not significantly rate limiting in the overall reaction. Proton inventory analysis indicates that one proton gives rise to solvent isotope effects. Multiple isotope effect studies indicate that both hydride and proton transfers are concerted. The pH profiles revealed that acid/base chemistry takes place in catalysis and substrate binding. The MtbSD 3D model was obtained in silico by homology modeling. Kinetic and chemical mechanisms for MtbSD are proposed on the basis of experimental data.  相似文献   

2.
采用氧自由基清除能力(ORAC)方法考察20种多酚类化合物的抗氧化活性。结果表明,该方法具有较优的线性关系(R2=0.997);检测限(LOD)和定量限(LOQ)为0.5~3.1 μmol·L-1,精密度<18%,准确度91%~105%。比较20种多酚类化合物抗氧化活性,对羟基苯甲酸类化合物中,鞣花酸和没食子酸具有较强的抗氧化活性;对羟基肉桂酸类以咖啡酸及其衍生物抗氧化活性最高;在类黄酮组分中,黄烷-3-醇表现出优良的抗氧化特性,黄酮醇次之。ORAC可作为评价多酚类化合物抗氧化的简便、高效的标准化检测方法。  相似文献   

3.
The effect of phenolic antioxidants on the rat liver microsomal glutathione S-transferase (MGST1) was investigated in vitro. When microsomes were incubated with various polyphenolic antioxidants, gallic acid (3,4,5-trihydroxybenzoic acid) markedly increased MGST1 activity and the increase was prevented in the presence of superoxide dismutase (SOD) or catalase. The MGST1 activity increased by gallic acid was decreased by further incubation with sodium arsenite, a sulfenic acid reducing agent, but was not with dithiothreitol, a disulfide bond reducing agent. The incubation of microsomes with gallic acid in the presence of the NADPH generating system which generates reactive oxygen species (ROS) through cytochrome P-450 system increased the MGST1activity in spite of scavenging the ROS and the increase was also depressed by SOD/catalase. The increase of MGST1 activity by gallic acid was prevented by co-incubation with a stable radical, 1,1-diphenyl-2-picrylhydrazyl or ferric chloride. These results suggest that the gallic acid acts as a pro-oxidant and activates MGST1 through oxidative modification of the enzyme.  相似文献   

4.
5.
In the present study, the Salmonella typhimurium tester strain TA 100 was used in the plate-incorporation test to examine the antimutagenic potential of caffeic, ferulic and cichoric acids extracted from plant species of genera Echinacea (L) Moench, as well as of another phenolic acids, on 3-(5-nitro-2-furyl)acrylic acid (5NFAA) and sodium azide mutagenicity. All tested compounds possess antimutagenic activity. In the case of 5NFAA, the antimutagenic potency of tested compounds was in the order of gallic acid > ferulic acid > caffeic acid > syringic acid > vanillic acid. The mutagenic effect of sodium azide was inhibited by tested phenolic acids by about 20-35 %. The most effective compound, gallic acid inhibits this effect by 82 % in the concentration of 500 mug/plate. The only exception from favourable properties of tested phenolic acids is cichoric acid, which in the contrary significantly increased the mutagenic effect of 5NFAA.  相似文献   

6.
ABSTRACT

This study investigated the contents of saponins and phenolic compounds in relation to their antioxidant activity and α-glucosidase inhibition activity of 7 colored quinoa varieties. The total saponin content was significantly different among 7 varieties and ranged from 7.51 to 12.12 mg OAE/g DW. Darker quinoa had a higher content of phenolic compounds, as well as higher flavonoids and antioxidant activity than that of light varieties. Nine individual phenolic compounds were detected in free and bound form, with gallic acid and ferulic acid representing the major compounds. The free and bound phenolic compounds (gallic acid and ferulic acid in particular) exhibited high linear correlation with their corresponding antioxidant values. In addition, the free phenolic extracts from colored quinoa exhibited higher inhibitory activity against α-glucosidase than the bound phenolic extracts. These findings imply that colored quinoa with abundant bioactive phytochemicals could be an important natural source for preparing functional food.  相似文献   

7.
Kinetic isotope effects have been measured for the estrogen sulfotransferase-catalyzed sulfuryl (SO3) transfer from p-nitrophenyl sulfate to the 5'-phosphoryl group of 3'-phosphoadenosine 5'-phosphate. 18(V/K)nonbridge = 1.0016 +/- 0.0005, 18(V/K)bridge = 1.0280 +/- 0.0006, and 15(V/K) = 1.0014 +/- 0.0004. (15(V/K) refers to the nitro group in p-nitrophenyl sulfate). The kinetic isotope effects indicate substantial S O bond fission in the transition state, with partial charge neutralization of the leaving group. The small kinetic isotope effect in the nonbridging sulfuryl oxygen atoms suggests no significant change in bond orders of these atoms occurs, consistent with modest nucleophilic involvement. A comparison of the data for enzymatic and uncatalyzed sulfuryl transfer reactions suggests that both proceed through very similar transition states.  相似文献   

8.
叶损伤诱导兴安落叶松针叶中10种酚酸的变化   总被引:1,自引:0,他引:1  
酚酸是一类重要次生抗虫物质.为研究损伤及昆虫取食诱导对兴安落叶松针叶内酚酸含量的影响,采用3种不同程度剪叶或落叶松毛虫幼虫取食处理兴安落叶松幼树,以高效液相色谱技术测定兴安落叶松健康针叶中酚酸含量.结果表明:与对照相比,处理后1 d,剪叶或昆虫取食4枝50%针叶处理的兴安落叶松幼苗健康针叶中,除阿魏酸无显著差异外,苯甲酸、咖啡酸、绿原酸、水杨酸、苯乙酸、肉桂酸、香草酸、丁香酸和没食子酸9种酚酸均差异显著;4枝75%针叶处理的10种酚酸含量均发生显著变化.说明剪叶及虫害50%、75%针叶处理均达到诱导阈值,能显著诱导兴安落叶松化学防御.在损伤程度相同情况下,处理1 d时,剪叶4枝50%、75%诱导的咖啡酸、苯乙酸、肉桂酸、香草酸和没食子酸的含量显著高于虫害诱导处理;5 d时,剪叶4枝50%、75%诱导处理的这5种酚酸含量显著低于虫害诱导处理;10 d时,两种方法诱导的酚酸含量差异不显著.说明剪叶诱导处理的酚酸含量变化比昆虫取食处理迅速,且诱导强度与剪叶程度相关.采用适当处理诱导针叶中酚酸含量的变化来增强兴安落叶松对害虫的防御能力是可行的.  相似文献   

9.
Tannin acyl hydrolase (EC 3.1.1.20) of Asp. oryzae No. 7 hydrolyzes tannic acid to glucose and gallic acid. The intermediate hydrolyzates are 1,2,3,4,6-pentagalloyl glucose, 2,3,4,6-tetragalloyl glucose and two kinds of monogalloyl glucose.

The enzyme hydrolyzes ester compounds of gallic acid, but does not hydrolyze any other substrate analogues such as methyl-resorcyrate.

The enzyme reaction is inhibited competitively by substrate analogues which have phenolic hydroxyls with the exception that 2,6-dihydroxy benzoic acid inhibits noncompetitively. Therefore the binding site of the enzyme may be able to react with any kind of phenolic hydroxyl, although the substrate forming a true ES-complex must be an ester compound of gallic acid.  相似文献   

10.
Baer BR  Kunze KL  Rettie AE 《Biochemistry》2007,46(41):11598-11605
Cytochrome P450s in the CYP4 family covalently bind their heme prosthetic group to a conserved acidic I-helix residue via an autocatalytic oxidation. This study was designed to evaluate the source of oxygen atoms in the covalent ester link in CYP4B1 enzymes labeled with [18O]glutamate and [18O]aspartate. The fate of the heavy isotope was then traced into wild-type CYP4B1 or the E310D mutant-derived 5-hydroxyhemes. Glutamate-containing tryptic peptides of wild-type CYP4B1 were found labeled to a level of 11-13% 18O. Base hydrolysis of labeled protein released 5-hydroxyheme which contained 12.8 +/- 1.9% 18O. Aspartate-containing peptides of the E310D mutant were labeled with 6.0-6.5% 18O, but as expected, no label was transmitted to recovered 5-hydroxyheme. These data demonstrate that the oxygen atom in 5-hydroxyheme derived from wild-type CYP4B1 originates in Glu310. Stoichiometric incorporation of the heavy isotope from the wild-type enzyme supports a perferryl-initiated carbocation mechanism for covalent heme formation in CYP4B1.  相似文献   

11.
The mechanism of 3-dehydroquinate synthase was explored by incubating partially purified enzyme with mixtures of [1-14C]3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) and one of the specifically tritiated substrates [4-3H]DAHP, [5-3H]DAHP, [6-3H]DAHP, (7RS)-[7-3H]DAHP, (7R)-[7-3H]DAHP, or (7S)-[7-3H]DAHP. Kinetic and secondary 3H isotope effects were calculated from 3H:14C ratios obtained in unreacted DAHP, 3-dehydroquinate, and 3-dehydroshikimate. 3H was not incorporated from the medium into 3-dehydroquinate, indicating that a carbanion (or methyl group) at C-7 is not formed. A kinetic isotope effect kH/k3H of 1.7 was observed at C-5, and afforded support for a mechanism involving oxidation of C-5 with NAD. A similar kinetic isotope effect was found at C-6 owing to removal of a proton in elimination of phosphate, which is reasonably assumed to be the next step in 3-dehydroquinate synthase. Hydrogen at C-7 of DAHP was not lost in the cyclization step of the reaction, indicating that the enol formed in phosphate elimination participated directly in an aldolase-type reaction with the carbonyl at C-2. In the dehydration of 3-dehydroquinate to 3-dehydroshikimate the (7R) proton from (7RS)- or (7R)-[7-3H]DAHP is lost, indicating that the 7R proton occupies the 2R position in dehydroquinate. Hence the cyclization step occurs with inversion of configuration at C-7. A kinetic isotope effect kH/k3H = 2.3 was observed in the conversion of (2R)-[2-3H]dehydroquinate to dehydroshikimate. Hence loss of a proton from the enzyme-dehydroquinate imine contributed to rate limitation in the reaction.  相似文献   

12.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (~5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23–90%). Hydroxyl radicals were involved (32–85%), except with 1,2,4-benzenetriol. Superoxide participated (81–86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   

13.
We have been able to isolate several phytotoxic compounds from aqueous extracts and leachates of cattails (Typha domingensis) using activated charcoal as an absorbant, followed by successive extraction with organic solvents, analysis by GC/MS, and structural elucidation by NMR spectroscopy when possible. The phytotoxins were identified as essential fatty acids (linoleic acid and alpha-linolenic acid) and phenolic compounds of known phytotoxic activity (caffeic acid from the aqueous extracts; caffeic, p-coumaric, and gallic acid from the leachates). Both extracts and the phytotoxins in the extracts have the potential of inhibiting the growth and chlorophyll production of several ecologically relevant species.  相似文献   

14.
Tea phenolic acids and catechins containing gallic acid moieties are most abundant in green tea, and various medical benefits have been proposed from their consumption. In the following, the cytotoxicities of these major tea phenolics toward isolated rat hepatocytes have been ranked and the mechanisms of cytotoxicity evaluated. The order of cytotoxic effectiveness found was epigallocatechin-3-gallate>propyl gallate>epicatechin-3-gallate>gallic acid, epigallocatechin>epicatechin. Using gallic acid as a model tea phenolic and comparing it with the tea catechins and gallic acid-derivative food supplements, the major cytotoxic mechanism found with hepatocytes was mitochondrial membrane potential collapse and ROS formation. Epigallocatechin-3-gallate was also the most effective at collapsing the mitochondrial membrane potential and inducing ROS formation. Liver injury was also observed in vivo when these tea phenolics were administered ip to mice, as plasma alanine aminotransferase levels were significantly increased. In contrast, GSH conjugation, methylation, metabolism by NAD(P)H:quinone oxidoreductase 1, and formation of an iron complex were important in detoxifying the gallic acid. In addition, for the first time, the GSH conjugates of gallic acid and epigallocatechin-3-gallate have been identified using mass spectrometry. These results add insight into the cytotoxic and cytoprotective mechanisms of the simple tea phenolic acids and the more complex tea catechins.  相似文献   

15.
Oxygen atoms in plant products originate from CO(2), H(2)O and O(2), precursors with quite different delta18O values. Furthermore their incorporation by different reactions implies isotope effects. On this base the resulting non-statistical 18O distributions in natural compounds are discussed. The delta18O value of cellulose is correlated to that of the leaf water, and the observed 18O enrichment (approximately +27 per thousand) is generally attributed to an equilibrium isotope effect between carbonyl groups and water. However, as soluble and heterotrophically synthesised carbohydrates show other correlations, a non-statistical 18O distribution - originating from individual biosynthetic reactions - is postulated for carbohydrates. Similarly, the delta18O values of organic acids, carbonyl compounds, alcohols and esters indicate water-correlated, but individual 18O abundances (e.g. O from acyl groups approximately +19% above water), depending upon origin and biosyntheses. Alcoholic groups introduced by monooxygenase reactions, e.g. in sterols and phenols, show delta18O values near +5 per thousand, in agreement with an assumed isotope fractionation factor of approximately 1.02 on the reaction with atmospheric oxygen (delta18O=+23.5 per thousand). Correspondingly, a "thermodynamically ordered isotope distribution" is only observed for oxygen in some functional groups correlated to an origin from CO(2) and H(2)O, not from O(2). The individual isotopic increments of functional groups permit the prediction of global delta18O values of natural compounds on the basis of their biosynthesis.  相似文献   

16.
The interaction of water with dehydroascorbic acid was examined by incubating dehydroascorbic acid and ascorbic acid in18O-labeled water for various amounts of time and then oxidizing the products with hydrogen peroxide or reducing the products with mercaptoethanol, with analysis by gas chromatography mass spectrometry. Based on mass changes, dehydroascorbic acid readily exchanged three oxygen atoms with H218O. When mercaptoethanol was used to reduce dehydroascorbic acid (which had been incubated in H218O) to ascorbic acid, the newly formed ascorbic acid also contained three labeled oxygen atoms. However, ascorbic acid incubated in H218O for the same amount of time under identical conditions exchanged only two labeled oxygen atoms. Electron impact mass spectrometry of derivatized ascorbic acid created a decarboxylation product which had only two labeled oxygen atoms, regardless if 3-oxygen-labeled or 2-oxygen-labeled ascorbic acid was the parent compound, isolating the extra oxygen addition to carbon 1. These data suggest that dehydroascorbic acid spontaneously hydrolyzes and dehydrates in aqueous solution and that the hydrolytic-hydroxyl oxygen is accepted by carbon 1. Ascorbic acid, on the other hand, does not show this same tendency to hydrolyze.  相似文献   

17.
Unique phenolic carboxylic acids from Sanguisorba minor   总被引:1,自引:0,他引:1  
Ayoub NA 《Phytochemistry》2003,63(4):433-436
The unique phenolic carboxylic acids, 4,8-dimethoxy-7-hydroxy-2-oxo-2H-1-benzopyran-5,6-dicarboxylic acid and 2-(4-carboxy-3-methoxystyryl)-2-methoxysuccinic acid were isolated and identified from the whole Sanguisorba minor plant. The known phenolics, gallic acid; ellagic acid; quercetin-3-O-(6"-galloylglucose); beta-glucogallin; 2,3-hexahydroxydiphenoyl-(alpha/beta)-glucose; 1-galloyl-2,3-hexahydroxydiphenoyl-alpha-glucose together with its beta-isomer were also characterized. Structures were established by conventional methods of analysis and confirmed by NMR and ESI-MS spectral analysis.  相似文献   

18.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (approximately 5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23-90%). Hydroxyl radicals were involved (32-85%), except with 1,2,4-benzenetriol. Superoxide participated (81-86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   

19.
Melon fruit fly, Bactrocera cucurbitae (Coquillett) is an important pest of cucurbits and other vegetable crops. It is not only a serious pest of cucurbit crops but sometimes also attacks non-host plants. In an endeavour to explore secondary metabolites as important and safe means of pest management, we investigated the effects of gallic acid, a phenolic compound, on the growth and development of melon fruit fly, B. cucurbitae. Larval survival and emergence were severely affected by gallic acid treatment. Both decreased in a concentration dependent manner with increase in concentration. Gallic acid-treated larvae took longer duration to pupate and reach the adult stage as compared to control larvae. Inhibitory effects of gallic acid were also observed on larval weight, pupal weight, mean relative growth rate and food assimilated which decreased with treatment. The ability of gallic acid to disrupt the development of B. cucurbitae suggests that the phenolic compound might have caused oxidative stress in the body of the insect.  相似文献   

20.
K Alexander  I G Young 《Biochemistry》1978,17(22):4745-4750
The biosynthetic origin of the oxygen atoms of ubiquinone 8 from aerobically grown Escherichia coli was studied by 18O labeling. An apparatus was developed which allowed the growth of cells under a defined atmosphere. Mass spectral analysis of ubiquinone 8 from cells grown under highly enriched 18O2 showed that three oxygen atoms of the quinone are derived from molecular oxygen. It was established that the molecular oxygen is incorporated into the two methoxyl groups (at C-5 and C-6) and one of the carbonyl positions of the ubiquinone molecule by demonstrating that only one of the incorporated oxygens will exchange with water under acidic conditions that specifically catalyze the exchange of carbonyl, but not methoxyl, oxygens. That the C-4 carbonyl oxygen is derived from molecular oxygen was shown by the incorporation of three atoms of 18O2 into ubiquinone 8 biosynthesized from added 4-hydroxybenzoic acid. Comparison of ubiquinone 8 and menaquinone 8 from E. coli grown under 18O2 confirmed that the labeled carbonyl oxygen of the [18O2]ubiquinone 8 is incorporated biosynthetically and not by chemical exchange in the cell. It is concluded that the three hydroxylation reactions involved in the pathway for the aerobic biosynthesis of ubiquinone are all catalyzed by monooxygenases. The implications of this study for the anaerobic biosynthesis of ubiquinone 8 in E coli are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号