首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   

2.
Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1–2 years under a controlled warming–grazing system and along an elevation gradient from 3200 to 3800 m. A free‐air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5–1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night‐time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night‐time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming–grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2‐year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C?1 based on the controlled warming–grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C?1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night‐time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions.  相似文献   

3.
The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming‐induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground‐level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short‐ and long‐term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming‐driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high‐latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming‐induced extension of LOS has important implications for the C‐sink potential of subarctic grasslands under climate change.  相似文献   

4.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   

5.
Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open‐air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal‐temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear‐cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7 °C, +3.4 °C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72‐7.0 m2 plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (?Tbelow) of +1.84 °C and +3.66 °C at 10 cm soil depth and (?Tabove) of +1.82 °C and +3.45 °C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small‐statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).  相似文献   

6.
Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1‐ha plots spanning an altitudinal gradient of 70–2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate‐driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr?1 (95% CI = 0.0005–0.0132 °C yr?1). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr?1, migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of extinction.  相似文献   

7.
We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid‐21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high‐elevation populations, we find considerable increases in fish body mass attributable both to warming of cold‐water temperatures and to extended growing seasons. During peak July to August warming, mid‐21st century temperatures will cause periods of increased thermal stress, rendering some low‐elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (<10%) or positive changes in total body mass by midcentury; we attribute this response to the fact that many low‐elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non‐native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non‐native species, underscoring the importance of developing climate adaptation strategies that reduce limiting factors such as non‐native species and habitat degradation.  相似文献   

8.
Rising temperatures caused by climate change could negatively alter plant ecosystems if temperatures exceed optimal temperatures for carbon gain. Such changes may threaten temperature‐sensitive species, causing local extinctions and range migrations. This study examined the optimal temperature of net photosynthesis (Topt) of two boreal and four temperate deciduous tree species grown in the field in northern Minnesota, United States under two contrasting temperature regimes. We hypothesized that Topt would be higher in temperate than co‐occurring boreal species, with temperate species exhibiting greater plasticity in Topt, resulting in better acclimation to elevated temperatures. The chamberless experiment, located at two sites in both open and understory conditions, continuously warmed plants and soils during three growing seasons. Results show a modest, but significant shift in Topt of 1.1 ± 0.21 °C on average for plants subjected to a mean 2.9 ± 0.01 °C warming during midday hours in summer, and shifts with warming were unrelated to species native ranges. The 1.1 °C shift in Topt with 2.9 °C warming might be interpreted as suggesting limited capacity to shift temperature response functions to better match changes in temperature. However, Topt of warmed plants was as well‐matched with prior midday temperatures as Topt of plants in the ambient treatment, and Topt in both treatments was at a level where realized photosynthesis was within 90–95% of maximum. These results suggest that seedlings of all species were close to optimizing photosynthetic temperature responses, and equally so in both temperature treatments. Our study suggests that temperate and boreal species have considerable capacity to match their photosynthetic temperature response functions to prevailing growing season temperatures that occur today and to those that will likely occur in the coming decades under climate change.  相似文献   

9.
We passively warmed tundra on the Antarctic Peninsula over four growing seasons and assessed its effect on dry mass and C and N stocks associated with the vascular plants Colobanthus quitensis (a cushion‐forming forb) and Deschampsia antarctica (a tussock grass), and mosses. Temperature treatments involved a warmed treatment that raised diurnal and diel canopy air temperatures by 2.3 and 1.3 °C, respectively, and a near‐ambient temperature treatment that raised diurnal and diel temperatures by 0.2 °C. These two different temperature regimes were achieved by wrapping filters around the frames to different extents and were nested within three UV treatments that filtered different solar UV wavebands. The experiment also included an ambient control treatment (unfiltered frames), and supplemental water and fertilizer treatments (applied to unfiltered frames). After four growing seasons, we collected cores of each vascular plant species and assessed the mass and C and N content of the aboveground current‐year biomass, the litter layer (which included nongreen live stems), and the organic soil horizon (which included roots). The thin nature of the organic soil horizon allowed us to sample this complete horizon and estimate near‐total ecosystem C and N stocks. A comparison of the warmed and near‐ambient temperature treatments found that warming led to greater aboveground biomass of C. quitensis, and more C in the aboveground biomass of both vascular plant species. Warming resulted in lower N concentrations of the aboveground biomass of both species. The water use efficiency of both species was greater under warming, based on their higher δ13C values. The mass of the litter layer under C. quitensis was greater under warming, and this layer contained more C and N and had a higher C : N ratio. The mass of the organic soil horizon under both species was greater under warming, and this horizon also contained more C and N. Warming also changed the species composition of the plant community – cover of C. quitensis increased while that of mosses declined. Warming resulted in the input of biomass into the system that had greater C : N ratios (and was likely more recalcitrant to decomposition) because (1) warming increased the C : N ratio of the biomass produced by both vascular plant species, (2) these inputs increased with warming because of greater biomass production, and (3) increases in C. quitensis cover led to greater biomass inputs by this species and its biomass had a greater C : N ratio than D. antarctica. Water or fertilizer supplements had few effects on aboveground biomass or C and N concentrations or pools, consistent with the relatively wet maritime climate and high soil nutrient levels of this system. Total C pools in the aboveground biomass, litter, and organic soil horizon were greater under warming. Warmed plots contained from 272 to 319 g m−2 more C than plots under near‐ambient temperatures, corresponding to a 23–34% increase in ecosystem C.  相似文献   

10.
Few studies have clearly linked long‐term monitoring with in situ experiments to clarify potential drivers of observed change at a given site. This is especially necessary when findings from a site are applied to a much broader geographic area. Here, we document vegetation change at Barrow and Atqasuk, Alaska, occurring naturally and due to experimental warming over nearly two decades. An examination of plant cover, canopy height, and community indices showed more significant differences between years than due to experimental warming. However, changes with warming were more consistent than changes between years and were cumulative in many cases. Most cases of directional change observed in the control plots over time corresponded with a directional change in response to experimental warming. These included increases in canopy height and decreases in lichen cover. Experimental warming resulted in additional increases in evergreen shrub cover and decreases in diversity and bryophyte cover. This study suggests that the directional changes occurring at the sites are primarily due to warming and indicates that further changes are likely in the next two decades if the regional warming trend continues. These findings provide an example of the utility of coupling in situ experiments with long‐term monitoring to accurately document vegetation change in response to global change and to identify the underlying mechanisms driving observed changes.  相似文献   

11.
Synthesis efforts that identify patterns of ecosystem response to a suite of warming manipulations can make important contributions to climate change science. However, cross‐study comparisons are impeded by the paucity of detailed analyses of how passive warming and other manipulations affect microclimate. Here we document the independent and combined effects of a common passive warming manipulation, open‐top chambers (OTCs), and a simulated widespread land use, clipping, on microclimate on the Tibetan Plateau. OTCs consistently elevated growing season averaged mean daily air temperature by 1.0–2.0°C, maximum daily air temperature by 2.1–7.3°C and the diurnal air temperature range by 1.9–6.5°C, with mixed effects on minimum daily air temperature, and mean daily soil temperature and moisture. These OTC effects on microclimate differ from reported effects of a common active warming method, infrared heating, which has more consistent effects on soil than on air temperature. There were significant interannual and intragrowing season differences in OTC effects on microclimate. For example, while OTCs had mixed effects on growing season averaged soil temperatures, OTCs consistently elevated soil temperature by approximately 1.0°C early in the growing season. Nonadditive interactions between OTCs and clipping were also present: OTCs in clipped plots generally elevated air and soil temperatures more than OTCs in nonclipped plots. Moreover, site factors dynamically interacted with microclimate and with the efficacy of the OTC manipulations. These findings highlight the need to understand differential microclimate effects between warming methods, within warming method across ecosystem sites, within warming method crossed with other treatments, and within sites over various timescales. Methods, sites and scales are potential explanatory variables and covariables in climate warming experiments. Consideration of this variability among and between experimental warming studies will lead to greater understanding and better prediction of ecosystem response to anthropogenic climate warming.  相似文献   

12.
Human‐induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+?5°C, +?700 μatm CO2) using multifactorial long‐term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12‐week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti‐fouling and anti‐herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti‐microfouling activity was highest during winter under warming, while anti‐macrofouling and anti‐herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti‐fouling and anti‐herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.  相似文献   

13.
Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open‐top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push–pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography–mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2‐fold increase in monoterpene and 5‐fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emission potentials and composition.  相似文献   

14.
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis‐idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11–75% and 52–95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis‐idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.  相似文献   

15.
Many species are expanding at their leading‐edge range boundaries in response to climate warming. Species are known to respond individualistically to climate change, but there has been little consideration of whether responses are consistent over time. We compared responses of 37 southerly distributed British butterflies over two study periods, first between 1970–1982 and 1995–1999 and then between 1995–1999 and 2005–2009, when mean annual temperature increased regionally by 0.03 °C yr?1 (a significant rate of increase) and 0.01 °C yr?1(a nonsignificant increase) respectively. Our study species might be expected to benefit from climate warming. We measured three responses to climate to investigate this; changes in range margin, distribution area and abundance. In general, the responses of species were inconsistent over time. Species that increased their distribution areas during the first period tended to do so again during the second period, but the relationship was weak. Changes in range margins and abundance were not consistent. In addition, only 5/37 species showed qualitatively similar responses in all three response variables over time (three species increased and two species declined in all variables in both periods). Overall rates of range expansion and distribution area change were significantly greater in the second study period, despite the lower rate of warming, perhaps due to species exploiting climate‐distribution lags remaining from the earlier, warmer period. However, there was a significantly greater decline in abundance during the second study period, so range expansions northwards were not necessarily accompanied by increases in distribution area and/or abundance. Hence, species ranges have been thinning as they have expanded northwards. The idiosyncratic responses of these species likely reflect the balance of climatic and habitat drivers of species distribution and abundance changes.  相似文献   

16.
Rising global temperatures are suggested to be drivers of shifts in tree species ranges. The resulting changes in community composition may negatively impact forest ecosystem function. However, long‐term shifts in tree species ranges remain poorly documented. We test for shifts in the northern range limits of 16 temperate tree species in Quebec, Canada, using forest inventory data spanning three decades, 15° of longitude and 7° of latitude. Range shifts were correlated with climate warming and dispersal traits to understand potential mechanisms underlying changes. Shifts were calculated as the change in the 95th percentile of latitudinal occurrence between two inventory periods (1970–1978, 2000–2012) and for two life stages: saplings and adults. We also examined sapling and adult range offsets within each inventory, and changes in the offset through time. Tree species ranges shifted predominantly northward, although species responses varied. As expected shifts were greater for tree saplings, 0.34 km yr?1, than for adults, 0.13 km yr?1. Range limits were generally further north for adults compared to saplings, but the difference diminished through time, consistent with patterns observed for range shifts within each life stage. This suggests caution should be exercised when interpreting geographic range offsets between life stages as evidence of range shifts in the absence of temporal data. Species latitudinal velocities were on average <50% of the velocity required to equal the spatial velocity of climate change and were mostly unrelated to dispersal traits. Finally, our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming, supporting concerns that warming will negatively impact the functioning of forest ecosystems.  相似文献   

17.
Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.  相似文献   

18.
The existence of fine‐grain climate heterogeneity has prompted suggestions that species may be able to survive future climate change in pockets of suitable microclimate, termed ‘microrefugia’. However, evidence for microrefugia is hindered by lack of understanding of how rates of warming vary across a landscape. Here, we present a model that is applied to provide fine‐grained, multidecadal estimates of temperature change based on the underlying physical processes that influence microclimate. Weather station and remotely derived environmental data were used to construct physical variables that capture the effects of terrain, sea surface temperatures, altitude and surface albedo on local temperatures, which were then calibrated statistically to derive gridded estimates of temperature. We apply the model to the Lizard Peninsula, United Kingdom, to provide accurate (mean error = 1.21 °C; RMS error = 1.63 °C) hourly estimates of temperature at a resolution of 100 m for the period 1977–2014. We show that rates of warming vary across a landscape primarily due to long‐term trends in weather conditions. Total warming varied from 0.87 to 1.16 °C, with the slowest rates of warming evident on north‐east‐facing slopes. This variation contributed to substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in the length of the frost‐free season varied from +11 to ?54 days and the increase in annual growing degree‐days from 51 to 267 °C days. Spatial variation in warming was caused primarily by a decrease in daytime cloud cover with a resulting increase in received solar radiation, and secondarily by a decrease in the strength of westerly winds, which has amplified the effects on temperature of solar radiation on west‐facing slopes. We emphasize the importance of multidecadal trends in weather conditions in determining spatial variation in rates of warming, suggesting that locations experiencing least warming may not remain consistent under future climate change.  相似文献   

19.
Climate warming has substantially advanced spring leaf flushing, but winter chilling and photoperiod co‐determine the leaf flushing process in ways that vary among species. As a result, the interspecific differences in spring phenology (IDSP) are expected to change with climate warming, which may, in turn, induce negative or positive ecological consequences. However, the temporal change of IDSP at large spatiotemporal scales remains unclear. In this study, we analyzed long‐term in‐situ observations (1951–2016) of six, coexisting temperate tree species from 305 sites across Central Europe and found that phenological ranking did not change when comparing the rapidly warming period 1984–2016 to the marginally warming period 1951–1983. However, the advance of leaf flushing was significantly larger in early‐flushing species EFS (6.7 ± 0.3 days) than in late‐flushing species LFS (5.9 ± 0.2 days) between the two periods, indicating extended IDSP. This IDSP extension could not be explained by differences in temperature sensitivity between EFS and LFS; however, climatic warming‐induced heat accumulation effects on leaf flushing, which were linked to a greater heat requirement and higher photoperiod sensitivity in LFS, drove the shifts in IDSP. Continued climate warming is expected to further extend IDSP across temperate trees, with associated implications for ecosystem function.  相似文献   

20.
Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate‐related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater‐dependent ecosystems (GDEs) remains poorly known. Here we report long‐term water temperature trends in 66 northern European cold‐water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968–2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high‐emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst‐case scenario, water temperature of these originally cold‐water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring‐fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold‐stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring‐fed streams. Climate change‐induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号