首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Modern concepts on the chromatin loop–domain organization and the role of the DNA regions specifically binding the nuclear matrix or nuclear scaffold (S/MARs) during its formation, maintenance, and regulation are discussed. Some S/MAR structural features, properties of binding the nuclear matrix, and probable mechanisms of their involvement in the gene regulation of activity are considered.  相似文献   

2.
3.
Malanga M  Farina B 《Biological chemistry》2000,381(11):1047-1053
Poly(ADP-ribose) is a nuclear polynucleotide involved in the regulation of chromatin functions via covalent and/or noncovalent modification of nuclear proteins. Using a binding assay on protein blots, we searched for poly(ADP-ribose) binding proteins in nuclear matrices from testes of differently aged rats as well as from various adult rat tissues (brain, liver, spleen). We found that nuclear matrix proteins represent a significant subset of the nuclear proteins that can establish noncovalent interactions with poly(ADP-ribose). The profiles of poly(ADP-ribose) binding nuclear matrix proteins appeared to be tissue-specific and changed during postnatal development in the testis. The isolation and analysis of endogenous poly-(ADP-ribose) from rat testes showed that the ADP-ribose polymers that bind nuclear matrix proteins in vitro are also present under physiologic conditions in vivo. These results further substantiate the possibility that poly(ADP-ribose) may affect chromatin functions through noncovalent interaction with specific protein targets, including nuclear matrix components.  相似文献   

4.
分离鉴定多功能的核基质蛋白及核基质结合蛋白是目前核基质研究的一个重要领域。通过与转录因子、核基质结合元件以及DNA间相互作用,核基质结合蛋白在DNA复制、转录、加工修饰等细胞内事件中起着支持和调节的作用。多ADP-核糖聚合酶[poly(ADP—ribose)polymerase,PARP]是一种高度保守的核基质结合蛋白,在多种活动例如基因组损伤修复、细胞凋亡、信号转导、基因表达调控中都发挥着调节的功能。PARP的潜在生物学功能已越来越引起国内外研究人员的关注。  相似文献   

5.
6.
7.
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3479-3486
The partially purified 4.5S [3H]dihydrotestosterone receptor binds to nuclear matrix isolated from rat Dunning prostate tumor with properties similar to those reported for androgen receptor binding in intact nuclei [Colvard, D.S., & Wilson, E.M. (1984) Biochemistry (preceding paper in this issue)] in that it requires Zn2+ and mercaptoethanol, is saturable, and is temperature dependent and of high affinity (Ka approximately 10(13) M-1). On a milligrams of DNA equivalent basis, the extent of matrix binding of androgen receptor (700 fmol of receptor bound/mg of matrix protein) is similar to that of intact nuclei, corresponding to approximately 1400 sites/nucleus. Association rate constants (ka) for 4.5S androgen receptor binding to matrix at 0, 15, and 25 degrees C are 2.7 X 10(5), 1.2 X 10(6), and 2.4 X 10(6) M-1 min-1, respectively, indicating an energy of activation of 15 kcal/mol. Up to 50% of matrix-bound receptor is extractable in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 5 mM pyridoxal 5'-phosphate. A protein fraction designated 8S androgen receptor promoting factor that promotes conversion of the 4.5S androgen receptor to 8 S [Colvard, D. S., & Wilson, E. M. (1981) Endocrinology (Baltimore) 109, 496-504] has been further purified and found to inhibit the binding of the 4.5S androgen receptor to isolated nuclei and nuclear matrix in a concentration-dependent manner. The results support the hypothesis that the 8S steroid receptor is a complex of the activated 4.5S androgen receptor with a non-steroid binding protein that renders the receptor incapable of binding in nuclei.  相似文献   

8.
9.
10.
In the accompanying report (C. F. Webb, C. Das, S. Eaton, K. Calame, and P. Tucker, Mol. Cell. Biol. 11:5197-5205, 1991), we characterize B-cell-specific protein-DNA interactions at -500 and -200 bp upstream of the mu immunoglobulin heavy chain promoter whose abundances were increased by interleukin-5 plus antigen. Because of the high A + T/G + C ratio of these sequences and the consistent findings by others that enhancer- and promoterlike regions are often located near matrix-associated regions, we asked whether these sequences might also be involved in binding to the nuclear matrix. Indeed, DNA fragments containing the -500 binding site were bound by nuclear matrix proteins. Furthermore, UV cross-linking studies showed that the DNA binding site for interleukin-5-plus-antigen-inducible proteins could also bind to proteins solubilized from the nuclear matrix. Nuclear matrix-associated sequences have also been demonstrated on either side of the intronic immunoglobulin heavy chain enhancer. Our data suggest a topological model by which interactions among proteins bound to the promoter and distal enhancer sequences might occur.  相似文献   

11.
5-Bromodeoxyuridine induces a senescence-like phenomenon in mammalian cells. This effect was dramatically potentiated by AT-binding ligands such as distamycin A, netropsin, and Hoechst 33258. The genes most remarkably affected by these ligands include the widely used senescence-associated genes and were located on or nearby Giemsa-dark bands of human chromosomes. We hypothesize that AT-rich scaffold/nuclear matrix attachment region sequences are involved in this phenomenon. In fact, upon substitution of thymine with 5-bromouracil, a rat S/MAR sequence reduced its degree of bending and became insensitive to cancellation of the bending by distamycin A. The S/MAR sequence containing 5-bromouracil also bound more tightly to nuclear scaffold proteins in vitro and this binding was not inhibited by distamycin A. Under the same conditions, the S/MAR sequence containing thymine easily dissociated from the nuclear scaffold proteins. Taken together, the synergistic induction of the genes may be explained not only by opening of condensed chromatin by distamycin A but also by increase in the binding of 5-bromouracil-containing S/MAR sequences to the nuclear scaffolds.  相似文献   

12.
13.
I Meier  T Phelan  W Gruissem  S Spiker    D Schneider 《The Plant cell》1996,8(11):2105-2115
The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher order chromatin organization and regulation of gene expression. Here, we report a novel nuclear matrix-localized MAR DNA binding protein, designated MAR binding filament-like protein 1 (MFP1), from tomato. In contrast to the few animal MAR DNA binding proteins thus far identified, MFP1 contains a predicted N-terminal transmembrane domain and a long filament-like alpha-helical domain that is similar to diverse nuclear and cytoplasmic filament proteins from animals and yeast. DNA binding assays established that MFP1 can discriminate between animal and plant MAR DNAs and non-MAR DNA fragments of similar size and AT content. Deletion mutants of MFP1 revealed a novel, discrete DNA binding domain near the C terminus of the protein. MFP1 is an in vitro substrate for casein kinase II, a nuclear matrix-associated protein kinase. Its structure, MAR DNA binding activity, and nuclear matrix localization suggest that MFP1 is likely to participate in nuclear architecture by connecting chromatin with the nuclear matrix and potentially with the nuclear envelope.  相似文献   

14.
pEPI-1, a vector in which a chromosomal scaffold/matrix-attached region (S/MAR) is linked to the simian virus 40 origin of replication, is propagated episomally in CHO cells in the absence of the virally encoded large T-antigen and is stably maintained in the absence of selection pressure. It has been suggested that mitotic stability is provided by a specific interaction of this vector with components of the nuclear matrix. We studied the interactions of pEPI-1 by crosslinking with cis-diamminedichloroplatinum II, after which it is found to copurify with the nuclear matrix. In a south-western analysis, the vector shows exclusive binding to hnRNP-U/SAF-A, a multifunctional scaffold/matrix specific factor. Immunoprecipitation of the crosslinked DNA-protein complex demonstrates that pEPI-1 is bound to this protein in vivo. These data provide the first experimental evidence for the binding of an artificial episome to a nuclear matrix protein in vivo and the basis for understanding the mitotic stability of this novel vector class.  相似文献   

15.
X-chromosome inactivation has long served as an experimental model system for understanding the epigenetic regulation of gene expression. Central to this phenomenon is the long, non-coding RNA Xist that is specifically expressed from the inactive X chromosome and spreads along the entire length of the chromosome in cis. Recently, two of the proteins originally identified as components of the nuclear scaffold/matrix (S/MAR-associated proteins) have been shown to control the principal features of X-chromosome inactivation; specifically, context-dependent competency and the chromosome-wide association of Xist RNA. These findings implicate the involvement of nuclear S/MAR-associated proteins in the organization of epigenetic machinery. Here, we describe a model for the functional role of S/MAR-associated proteins in the regulation of key epigenetic processes.  相似文献   

16.
Binding of matrix attachment regions to lamin B1.   总被引:33,自引:0,他引:33  
Eukaryotic chromatin is organized into topologically constrained loops that are attached to the nuclear matrix. The regions of DNA that interact with the matrix are called matrix attachment regions (MARs). We studied the spatial distribution of MAR-binding sites in the nuclear matrix from rat liver cells, following a combined biochemical and ultrastructural approach. We found that MAR-binding sites are distributed equally over the internal fibrogranular network and the peripheral nuclear lamina. Internal and peripheral binding sites have similar binding characteristics: both sets of binding sites show specific and saturable binding of MARs from different organisms. By means of a DNA-binding protein blot assay and in vitro binding studies, we identified lamin B1 as a MAR-binding protein, which provides evidence for a specific interaction of DNA with the nuclear lamina.  相似文献   

17.
18.
Steroid receptor binding factor (RBF) was originally isolated from avian oviduct nuclear matrix. When bound to avian genomic DNA, RBF generates saturable high-affinity binding sites for the avian progesterone receptor (PR). Recent studies have shown that RBF binds to a 54 bp element in the 5'-flanking region of the progesterone-regulated avian c-myc gene, and nuclear matrix-like attachment sites flank the RBF element [Lauber et al. (1997) J. Biol. Chem. 272, 24657-24665]. In this paper, electrophoretic mobility shift assays (EMSAs) and S1 nuclease treatment are used to demonstrate that the RBF-maltose binding protei (MBP) fusion protein binds to single-stranded DNA of its element. Only the N-terminal domain of RBF binds the RBF DNA element as demonstrated by southwestern blot analyses, and by competition EMSAs between RBF-MBP and the N-terminal domain. Mass spectrometric analysis of the C-terminal domain of RBF demonstrates its potential to form noncovalent protein-protein interactions via a potential leucine-isoleucine zipperlike structure, suggesting a homo- and/or possible heterodimer structure in solution. These data support that the nuclear matrix binding site (acceptor site) for PR in the c-myc gene promoter is composed of RBF dimers bound to a specific single-stranded DNA element. The dimers of RBF are generated by C-terminal leucine zipper and the DNA binding occurs at the N-terminal parallel beta-sheet DNA binding motif. This complex is flanked by nuclear matrix attachment sites.  相似文献   

19.
Bright/ARID3a has been implicated in mitogen- and growth factor-induced up-regulation of immunoglobulin heavy-chain (IgH) genes and in E2F1-dependent G1/S cell cycle progression. For IgH transactivation, Bright binds to nuclear matrix association regions upstream of certain variable region promoters and flanking the IgH intronic enhancer. While Bright protein was previously shown to reside within the nuclear matrix, we show here that a significant amount of Bright resides in the cytoplasm of normal and transformed B cells. Leptomycin B, chromosome region maintenance 1 (CRM1) overexpression, and heterokaryon experiments indicate that Bright actively shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. We mapped the functional nuclear localization signal to the N-terminal region of REKLES, a domain conserved within ARID3 paralogues. Residues within the C terminus of REKLES contain its nuclear export signal, whose regulation is primarily responsible for Bright shuttling. Growth factor depletion and cell synchronization experiments indicated that Bright shuttling during S phase of the cell cycle leads to an increase in its nuclear abundance. Finally, we show that shuttle-incompetent Bright point mutants, even if sequestered within the nucleus, are incapable of transactivating an IgH reporter gene. Therefore, regulation of Bright's cellular localization appears to be required for its function.  相似文献   

20.
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 5, pp. 598–606.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号