首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phage display for engineering and analyzing protein interaction interfaces   总被引:8,自引:3,他引:5  
Phage display is the longest-standing platform among molecular display technologies. Recent developments have extended its utility to proteins that were previously recalcitrant to phage display. The technique has played a dominant role in forming the field of synthetic binding protein engineering, where novel interfaces have been generated from libraries built using antibody fragment frameworks and also alternative scaffolds. Combinatorial methods have also been developed for the rapid analysis of binding energetics across protein interfaces. The ability to rapidly select and analyze binding interfaces, and compatibility with high-throughput methods under diverse conditions, makes it likely that the combination of phage display and synthetic combinatorial libraries will prove to be the method of choice for synthetic binding protein engineering for broad applications.  相似文献   

2.
Recent advances in methodologies and design of combinatorial library selection have enabled comprehensive characterization of sequence space for protein-protein interaction interfaces and generation of fully synthetic binding interfaces. By exhaustively introducing and quantitatively analyzing mutations in natural interfaces, new insights into their molecular architecture and plasticity have emerged. Minimalist combinatorial libraries based on a restricted amino acid code have produced synthetic interfaces that rival natural ones using a different set of rules. A two amino acid code composed of just tyrosine and serine in the context of antibody CDR loops is sufficient to produce high affinity and specific interactions with different classes of protein targets. Structural analyses highlight the dominant role of Tyr in forming productive interactions and demonstrate the dominance of conformational diversity over chemical diversity in producing na?ve binding interfaces. Synthetic binding proteins are beginning to be used as a powerful crystallization tool to attack important structural biology problems that are recalcitrant to crystallization using traditional methods.  相似文献   

3.
Phage display in pharmaceutical biotechnology   总被引:15,自引:0,他引:15  
Over the past year, methods for the construction of M13 phage-display libraries have been significantly improved and new display formats have been developed. Phage-displayed peptide libraries have been used to isolate specific ligands for numerous protein targets. New phage antibody libraries have further expanded the practical applications of the technology and phage cDNA libraries have proven useful in defining natural binding interactions. In addition, phage-display methods have been developed for the rapid determination of binding energetics at protein-protein interfaces.  相似文献   

4.
Polypeptide libraries cast a broad net for defining enzyme and binding protein specificities. In addition to uncovering rules for molecular recognition, the binding preferences and functional group tolerances from such libraries can reveal mechanisms underlying biochemical and cellular processes. Ligands obtained from protein libraries can also provide pharmaceutical lead compounds and even reagents to further explore cell biology. Here, we review selected recent examples of protein libraries demonstrating these principles. In particular, we focus on combinatorial libraries composed of randomized peptides or variations of a single protein. The characteristics of various techniques for library constructions and screening are also briefly surveyed.  相似文献   

5.
Molecular principles of the interactions of disordered proteins   总被引:6,自引:0,他引:6  
Thorough knowledge of the molecular principles of protein-protein recognition is essential to our understanding of protein function at the cellular level. Whereas interactions of ordered proteins have been analyzed in great detail, complexes of intrinsically unstructured/disordered proteins (IUPs) have hardly been addressed so far. Here, we have collected a database of 39 complexes of experimentally verified IUPs, and compared their interfaces with those of 72 complexes of ordered, globular proteins. The characteristic differences found between the two types of complexes suggest that IUPs represent a distinct molecular implementation of the principles of protein-protein recognition. The interfaces do not differ in size, but those of IUPs cover a much larger part of the surface of the protein than for their ordered counterparts. Moreover, IUP interfaces are significantly more hydrophobic relative to their overall amino acid composition, but also in absolute terms. They rely more on hydrophobic-hydrophobic than on polar-polar interactions. Their amino acids in the interface realize more intermolecular contacts, which suggests a better fit with the partner due to induced folding upon binding that results in a better adaptation to the partner. The two modes of interaction also differ in that IUPs usually use only a single continuous segment for partner binding, whereas the binding sites of ordered proteins are more segmented. Probably, all these features contribute to the increased evolutionary conservation of IUP interface residues. These noted molecular differences are also manifested in the interaction energies of IUPs. Our approximation of these by low-resolution force-fields shows that IUPs gain much more stabilization energy from intermolecular contacts, than from folding, i.e. they use their binding energy for folding. Overall, our findings provide a structural rationale to the prior suggestions that many IUPs are specialized for functions realized by protein-protein interactions.  相似文献   

6.
Synthetic antibody libraries with restricted chemical diversity were used to explore the intrinsic contributions of four amino acids (Tyr, Ser, Gly and Arg) to the affinity and specificity of antigen recognition. There was no correlation between nonspecific binding and the content of Tyr, Ser or Gly in the antigen-binding site, and in fact, the most specific antibodies were those with the highest Tyr content. In contrast, Arg content was clearly correlated with increased nonspecific binding. We combined Tyr, Ser and Gly to generate highly specific synthetic antibodies with affinities in the subnanomolar range, showing that the high abundance of Tyr, Ser and Gly in natural antibody germ line sequences reflects the intrinsic capacity of these residues to work together to mediate antigen recognition. Despite being a major functional contributor to co-evolved protein-protein interfaces, we find that Arg does not contribute generally to the affinity of naïve antigen-binding sites and is detrimental to specificity. Again, this is consistent with studies of natural antibodies, which have shown that nonspecific, self-reactive antibodies are rich in Arg and other positively charged residues. Our findings suggest that the principles governing naïve molecular recognition differ from those governing co-evolved interactions. Analogous studies can be designed to explore the roles of the other amino acids in molecular recognition. Results of such studies should illuminate the basic principles underlying natural protein-protein interactions and should aid the design of synthetic binding proteins with functions beyond the scope of natural proteins.  相似文献   

7.
Unraveling hot spots in binding interfaces: progress and challenges   总被引:1,自引:0,他引:1  
Protein interface hot spots, as revealed by alanine scanning mutagenesis, continue to stimulate interest in the biophysical basis of molecular recognition. Although these regions apparently constitute fertile grounds for intermolecular interactions, no general algorithm has yet been developed that can predict hot spots based solely on their shape or composition. The discovery of structural plasticity in hot spot regions indicates that dynamic simulation techniques may be essential for achieving a predictive understanding of binding interface energetics. Future progress will depend as much on the application of new computational approaches for dissecting protein interfaces as on expanding our empirical databank of mutagenic substitutions and their effects. Despite our current theoretical shortcomings, recent methodological advances provide efficient experimental means of probing hot spots and enable immediate applications for hot spots in drug discovery.  相似文献   

8.
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.  相似文献   

9.
10.
Zheng S  Robertson TA  Varani G 《The FEBS journal》2007,274(24):6378-6391
RNA-protein interactions are fundamental to gene expression. Thus, the molecular basis for the sequence dependence of protein-RNA recognition has been extensively studied experimentally. However, there have been very few computational studies of this problem, and no sustained attempt has been made towards using computational methods to predict or alter the sequence-specificity of these proteins. In the present study, we provide a distance-dependent statistical potential function derived from our previous work on protein-DNA interactions. This potential function discriminates native structures from decoys, successfully predicts the native sequences recognized by sequence-specific RNA-binding proteins, and recapitulates experimentally determined relative changes in binding energy due to mutations of individual amino acids at protein-RNA interfaces. Thus, this work demonstrates that statistical models allow the quantitative analysis of protein-RNA recognition based on their structure and can be applied to modeling protein-RNA interfaces for prediction and design purposes.  相似文献   

11.
Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm “dynamics govern specificity” might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design.  相似文献   

12.
Monte Carlo simulations of molecular recognition at the consensus binding site of the constant fragment (Fc) of human immunoglobulin G (Ig) protein have been performed to analyze structural and thermodynamic aspects of binding for the 13-residue cyclic peptide DCAWHLGELVWCT. The energy landscape analysis of a hot spot at the intermolecular interface using alanine scanning and equilibrium-simulated tempering dynamics with the simplified, knowledge-based energy function has enabled the role of the protein hot spot residues in providing the thermodynamic stability of the native structure to be determined. We have found that hydrophobic interactions between the peptide and the Met-252, Ile-253, His-433, and His-435 protein residues are critical to guarantee the thermodynamic stability of the crystallographic binding mode of the complex. Binding free energy calculations, using a molecular mechanics force field and a solvation energy model, combined with alanine scanning have been conducted to determine the energetic contribution of the protein hot spot residues in binding affinity. The conserved Asn-434, Ser-254, and Tyr-436 protein residues contribute significantly to the binding affinity of the peptide-protein complex, serving as an energetic hot spot at the intermolecular interface. The results suggest that evolutionary conserved hot spot protein residues at the intermolecular interface may be partitioned in fulfilling thermodynamic stability of the native binding mode and contributing to the binding affinity of the complex.  相似文献   

13.
Proteins often bind other proteins in more than one way. Thus alternative binding modes is an essential feature of protein interactions. Such binding modes may be detected by X‐ray crystallography and thus reflected in Protein Data Bank. The alternative binding is often observed not for the protein itself but for its structural homolog. The results of this study based on the analysis of a comprehensive set of co‐crystallized protein–protein complexes show that the alternative binding modes generally do not overlap, but are spatially separated. This effect is based on molecular recognition characteristics of the protein structures. The results are also in excellent agreement with the intermolecular energy funnel size estimates obtained previously by an independent methodology. The results provide an important insight into the principles of protein association, as well as potential guidelines for modeling of protein complexes and the design of protein interfaces.  相似文献   

14.
Phage display mutagenesis is a widely used approach to engineering novel protein properties and is especially powerful in probing structure-function relationships in molecular recognition processes. The relative contributions of additive and cooperative binding forces and the influence of conformational diversity in producing a novel protein-protein interface is investigated using as a model an ultra-high-affinity receptor binding variant of human growth hormone (hGHv) that has been previously affinity matured. The modular aspect of how the mutations were grouped in the phage display libraries and combined allowed for a systematic probing of the inherent functional cross-talk between the different secondary structure elements that make up the remodeled hGHv binding surface. We performed an alanine scanning analyses of 35 hGHv residues and determined the kinetics of each variant by surface plasmon resonance (SPR). This analysis showed that there is a significant difference between the additive and cooperative binding forces existing among the selected residues in each library module, and the binding advantage of these residues is maximized over the original wild-type residue when in the context of the other mutations in the library. The degree to which residues in a particular mutagenesis library display binding cooperativity characteristics is generally correlated with the conformational plasticity of the polypeptide chain. Additionally, these cooperativity effects change when the mutations from one library are combined with the mutations from one or several of the other separate libraries. This supports the idea that significant functional cross-talk exists between the combined library modules that can affect the binding energetics of individual residues over a large distance.  相似文献   

15.
《Journal of molecular biology》2019,431(17):3157-3178
A long-standing goal in biology is the complete annotation of function and structure on all protein–protein interactions, a large fraction of which is mediated by intrinsically disordered protein regions (IDRs). However, knowledge derived from experimental structures of such protein complexes is disproportionately small due, in part, to challenges in studying interactions of IDRs. Here, we introduce IDRBind, a computational method that by combining gradient boosted trees and conditional random field models predicts binding sites of IDRs with performance approaching state-of-the-art globular interface predictions, making it suitable for proteome-wide applications. Although designed and trained with a focus on molecular recognition features, which are long interaction-mediating-elements in IDRs, IDRBind also predicts the binding sites of short peptides more accurately than existing specialized predictors. Consistent with IDRBind's specificity, a comparison of protein interface categories uncovered uniform trends in multiple physicochemical properties, positioning molecular recognition feature interfaces between peptide and globular interfaces.  相似文献   

16.

Background  

A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved.  相似文献   

17.
The design of proteins and peptides as molecular receptors is a rapidly growing area of research. Two primary approaches have been utilized, involving the minimization of known protein binding motifs or the de novo design of binding pockets within well-folded protein structures. These approaches are complementary and help define the minimum requirements necessary for biomolecular recognition. Recent advances in this area include the design of cavities within helix bundles for the binding of anesthetics, the design of beta-hairpins for the recognition of nucleotides and oligonucleotides, the redesign of protein binding sites for unique ligands, and the design of mini-proteins via protein grafting for the recognition of proteins and DNA. These advances provide exciting new opportunities to develop novel biosensors, de novo designed catalysts, exogenously triggered synthetic signal transduction cascades, and novel approaches to therapeutic treatments.  相似文献   

18.
Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.  相似文献   

19.
Three model biomembrane systems, monolayers, micelles, and vesicles, have been used to study the influence of chemical and physical variables of hapten presentation at membrane interfaces on antibody binding. Hapten recognition and binding were monitored for the anti-fluorescein monoclonal antibody 4-4-20 generated against the hapten, fluorescein, in these membrane models as a function of fluorescein-conjugated lipid architecture. Specific recognition and binding in this system are conveniently monitored by quenching of fluorescein emission upon penetration of fluorescein into the antibody's active site. Lipid structure was shown to play a large role in affecting antibody quenching. Interestingly, the observed degrees of quenching were nearly independent of the lipid membrane model studied, but directly correlated with the chemical structure of the lipids. In all cases, the antibody recognized and quenched most efficiently a lipid based on dioctadecylamine where fluorescein is attached to the headgroup via a long, flexible hydrophilic spacer. Dipalmitoyl phosphatidylethanolamine containing a fluorescein headgroup demonstrated only partial binding/quenching. Egg phosphatidylethanolamine with a fluorescein headgroup showed no susceptibility to antibody recognition, binding, or quenching. Formation of two-dimensional protein domains upon antibody binding to the fluorescein-lipids in monolayers is also presented. Chemical and physical requirements for these antibody-hapten complexes at membrane surfaces have been discussed in terms of molecular dynamics simulations based on recent crystallographic models for this antibody-hapten complex (Herron et al., 1989. Proteins Struct. Funct. Genet. 5:271-280).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号