共查询到20条相似文献,搜索用时 15 毫秒
1.
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin (5-HT). Once thought to be a single gene product, TPH is now known to exist in two isoforms. Isoform 1 (TPH1) is found in the pineal gland and gut, and isoform 2 (TPH2) is selectively expressed in brain. A single-nucleotide polymorphism in TPH2 results in a proline-to-arginine mutation at residue 447 and substantially lowers catalytic activity. In view of the importance of TPH in determining brain 5-HT function, we cloned TPH2 and produced the P447R mutant to assess the importance of this proline in enzyme function. Catalytically active TPH2 and the P447R mutant were expressed at the predicted subunit molecular mass of 56 kDa. The P447R mutant expressed less than 50% of the activity of TPH2. Mutation of this conserved proline in TPH1 (P403R) also resulted in an enzyme with significantly lower activity than the wild-type enzyme. The P447R mutant had a V(max) 50% lower than that of TPH2. The P447R mutation did not alter the oligomeric assembly of the protein, nor change its responsiveness to cysteine modification. The P447R mutation did not alter enzyme substrate specificity or stability, but conferred slightly enhanced sensitivity to inhibition by dopamine and diminished sensitivity to iron in catalysis. The conserved proline in TPH (residue 447 in TPH2 and 403 in TPH1) plays an important role in enzyme function by regulating V(max) of the catalytic reaction. 相似文献
2.
3.
Tryptophan hydroxylase (TPH) catalyses the rate-limiting step in the biosynthesis of serotonin. In vertebrates, the homologous genes tph1 and tph2 encode two different enzymes with distinct patterns of expression, enzyme kinetics and regulation. Variants of TPH2 have recently reported to be associated with reduced serotonin production and behavioural alterations in man and mice. We have produced the human forms of these enzymes in Esherichia coli and in human embryonic kidney cell lines (HEK293) and examined the effects of mutations on their heterologous expression levels, solubility, thermal stability, secondary structure, and catalytic properties. Pure human TPH2 P449R (corresponds to mouse P447R) had comparable catalytic activity (V(max)) and solubility relative to the wild type, but had decreased thermal stability; whereas human TPH2 R441H had decreased activity, solubility and stability. Thus, we consider the variations in kinetic values between wild-type and TPH2 mutants to be of secondary importance to their effects on protein stability and solubility. These findings provide potential molecular explanations for disorders related to the central serotonergic system, such as depression or suicidal behaviour. 相似文献
4.
Tryptophan hydroxylase (TPH) catalyses the first and rate limiting step in the biosynthesis of the neurotransmitter serotonin. There are two TPH isoenzymes in humans, encoded by two different genes: TPH1 and the recently described TPH2. We have expressed both human enzymes and various deletion mutants of TPH2 (DeltaN44, DeltaC17, DeltaC19, DeltaC51) in COS7 cells. TPH1 and 2 displayed different kinetic properties with a lower K(m) value of TPH1. Removal of 44 amino acids from the N-terminus of TPH2 resulted in a 3-4-fold increased V(max), which indicates a strong inhibitory function of this part on the enzymes activity. TPH1 and 2 were able to form homooligomers and also heterooligomers with each other. The different deletion mutants (DeltaC17, DeltaC19 and DeltaC51), which lack the putative C-terminal leucine zipper tetramerization domain, existed as monomeric enzymes. While short deletions (DeltaC17 and DeltaC19) hardly changed V(max) values, the DeltaC51 mutant lost 99% of TPH activity. These data identify a region between the C-terminal oligomerization domain and the catalytic domain, which is indispensable for TPH2 activity. 相似文献
5.
Migraine is an episodic pain disorder whose pathophysiology is related to deficiency of serotonin signaling and abnormal function of the P/Q-type calcium channel, CACNA1A. Because the relationship of the CACNA1A channel to serotonin signaling is unknown and potentially of therapeutic interest we have used genetic analysis of the Caenorhabditis elegans ortholog of this calcium channel, UNC-2, to help identify candidate downstream effectors of the human channel. By genetic dissection of the lethargic mutant phenotype of unc-2, we have established an epistasis pathway showing that UNC-2 function antagonizes a transforming growth factor (TGF)-beta pathway influencing movement rate. This same UNC-2/TGF-beta pathway is required for accumulation of normal serotonin levels and stress-induced modulation of tryptophan hydroxylase (tph) expression in the serotonergic chemosensory ADF neurons, but not the NSM neurons. We also show that transgenic expression of the migraine-associated Ca2+ channel, CACNA1A, in unc-2 animals can functionally substitute for UNC-2 in stress-activated regulation of tph expression. The demonstration that these evolutionarily related channels share a conserved ability to modulate tph expression through their effects on TGF-beta signaling provides the first specific example of how CACNA1A function may influence levels of the critical migraine neurotransmitter serotonin. 相似文献
6.
7.
Distribution of the C1473G polymorphism in tryptophan hydroxylase 2 gene in laboratory and wild mice
D. V. Osipova A. V. Kulikov K. Mekada A. Yoshiki M. P. Moshkin E. V. Kotenkova N. K. Popova 《Genes, Brain & Behavior》2010,9(5):537-543
The neurotransmitter serotonin is implicated in the regulation of various forms of behavior, including aggression, sexual behavior and stress response. The rate of brain serotonin synthesis is determined by the activity of neuronal‐specific enzyme tryptophan hydroxylase 2. The missense C1473G substitution in mouse tryptophan hydroxylase 2 gene has been shown to lower the enzyme activity and brain serotonin level. Here, the C1473G polymorphism was investigated in 84 common laboratory inbred strains, 39 inbred and semi‐inbred strains derived from wild ancestors (mostly from Eurasia) and in 75 wild mice trapped in different locations in Russia and Armenia. Among all the classical inbred strains studied, only substrains of BALB/c, A and DBA, as well as the IITES/Nga and NZW/NSlc strains were homozygous for the 1473G allele. In contrast to laboratory strains, the 1473G allele was not present in any of the samples from wild and wild‐derived mice, although the wild mice varied substantially in the C1477T neutral substitution closely linked to the C1473G polymorphism. According to these results, the frequency of the 1473G allele in natural populations does not exceed 0.5%, and the C1473G polymorphism is in fact a rare mutation that is possibly eliminated by the forces of natural selection. 相似文献
8.
Daubner SC Moran GR Fitzpatrick PF 《Biochemical and biophysical research communications》2002,292(3):639-641
The active site residue phenylalanine 313 is conserved in the sequences of all known tryptophan hydroxylases. The tryptophan hydroxylase F313W mutant protein no longer shows a preference for tryptophan over phenylalanine as a substrate, consistent with a role of this residue in substrate specificity. A tryptophan residue occupies the homologous position in tyrosine hydroxylase. The tyrosine hydroxylase W372F mutant enzyme does not show an increased preference for tryptophan over tyrosine or phenylalanine, so that this residue cannot be considered the dominant factor in substrate specificity in this family of enzymes. 相似文献
9.
Yohrling IV GJ Jiang GC DeJohn MM Robertson DJ Vrana KE Cha JH 《Journal of neurochemistry》2002,82(6):1416-1423
The pathogenic mechanisms of the mutant huntingtin protein that cause Huntington's disease (HD) are unknown. Previous studies have reported significant decreases in the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the brains of the R6/2 transgenic mouse model of HD. In an attempt to elucidate the cause of these neurochemical perturbations in HD, the protein levels and enzymatic activity of tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, were determined. Enzyme activity was measured in brainstem homogenates from 4-, 8-, and 12-week-old R6/2 mice and compared with aged-matched wild-type control mice. We observed a 62% decrease in brainstem TPH activity (p = 0.009) in 4-week-old R6/2 mice, well before the onset of behavioral symptoms. In addition, significant decreases in TPH activity were also observed at 8 and 12 weeks of age (61%, p = 0.02 and 86%, p = 0.005, respectively). In the 12-week-old-mice, no change in immunoreactive TPH was observed. In vitro binding showed that TPH does not bind to exon 1 of huntingtin in a polyglutamine-dependent manner. Specifically, glutathione-S-transferase huntingtin exon 1 proteins with 20, 32 or 53 polyglutamines did not interact with radiolabeled tryptophan hydroxylase. Therefore, the inhibition of TPH activity does not appear to result from a direct huntingtin/TPH interaction. Receptor binding analyses for the 5-HT1A receptor in 12-week-old R6/2 mice revealed significant reductions in 8-OH-[3H]DPAT binding in several hippocampal and cortical regions. These results demonstrate that the serotonergic system in the R6/2 mice is severely disrupted in both presymptomatic and symptomatic mice. The presymptomatic inhibition of TPH activity in the R6/2 mice may help explain the functional consequences of HD and provide insights into new targets for pharmacotherapy. 相似文献
10.
Kuhn DM Sakowski SA Geddes TJ Wilkerson C Haycock JW 《Journal of neurochemistry》2007,103(4):1567-1573
Tryptophan hydroxylase (TPH) is the initial and rate-limiting enzyme in the biosynthesis of serotonin. TPH was once thought to be a single-gene product but it is now known to exist in two isoforms. TPH1 is found in the periphery and pineal gland whereas TPH2 is expressed specifically in the CNS. Both TPH isoforms are known to be regulated by protein kinase-dependent phosphorylation and the sites of modification of TPH1 by protein kinase A have been identified. While TPH2 is activated by calcium, calmodulin-dependent protein kinase II (CaMKII), the sites at which this isoform is modified are not known. Treatment of wild-type TPH2 with CaMKII followed by mass spectrometry analysis revealed that the enzyme was activated and phosphorylated at a single site, serine-19. Mutagenesis of serine-19 to alanine did not alter the catalytic function of TPH2 but this mutant enzyme was neither activated nor phosphorylated by CaMKII. A phosphopeptide bracketing phosphoserine-19 in TPH2 was used as an antigen to generate polyclonal antibodies against phosphoserine-19. The antibodies are highly specific for phosphoserine-19 in TPH2. The antibodies do not react with wild-type TPH2 or TPH1 and they do not recognize phophoserine-58 or phosphoserine-260 in TPH1. These results establish that activation of TPH2 by CaMKII is mediated by phosphorylation of serine-19 within the regulatory domain of the enzyme. Production of a specific antibody against the CaMKII phosphorylation site in TPH2 represents a valuable tool to advance the study of the mechanisms regulating the function of this important enzyme. 相似文献
11.
Sugden D 《Journal of neurochemistry》2003,86(5):1308-1311
A second gene encoding a functional tryptophan hydroxylase activity has recently been described (TPH2), which is expressed abundantly in brainstem, the primary site of serotonergic neurons in the CNS. As serotonin (5-HT) has an important role as a precursor of the nocturnal synthesis of the pineal gland hormone, melatonin, it was of interest to determine the relative expression of TPH1 and 2 mRNA in the rat pineal during the light:dark (L:D) cycle using sensitive real-time RT-PCR assays which were developed for each TPH isoform. TPH1 mRNA expression was 105-fold more abundant in rat pineal than TPH2, and showed a significant approximately 4-fold nocturnal increase in expression which may contribute to the previously described nocturnal increase in pineal tryptophan hydroxylase activity. TPH2 expression within the gland showed no significant variation with time of day and was very low (approximately 300 copies/gland) indicating expression in the small proportion of "non-pinealocyte" cells in the gland. 相似文献
12.
Bao X Tian X Zhao Z Qu Y Wang B Zhang J Liu T Yang L Lv J Song C 《Cell and tissue research》2008,332(3):555-563
Immediately following the discovery of tryptophan hydroxylase in Drosophila, we demonstrated the presence of tryptophan hydroxylase in the brain of the beetle Harmonia axyridis (Coleoptera: Coccinellidae). However, whether tryptophan hydroxylase is present in the brains of other insects is still a
matter of discussion. In the current study, sheep anti-tryptophan hydroxylase polyclonal antibody has been applied to test
for tryptophan hydroxylase immunoreactivity in a broader taxonomic range of insect brains, including holometabolous and hemimetabolous
insects: one species each of Coleoptera, Hymenoptera, Diptera, and Blattaria, and two species of Lepidoptera. All species
show consistent tryptophan hydroxylase immunoreactivity with distribution patterns matching that of serotonin. The immuno-positive
results of such an antibody in brains from diverse orders of insects suggest that specific tryptophan hydroxylase responsible
for central serotonin synthesis is probably present in the brains of all insects.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
This work was supported by grants from the National Natural Science Foundation of China (grant no. 30470546) and the Natural
Science Foundation of Jilin Province (grant no. 20030550–7). 相似文献
13.
According to WHO, suicide accounts for about 1 000 000 deaths worldwide every year. In view of these dramatic data, several studies have tried to identify possible biological mechanisms and markers of suicide. Genes encoding for proteins involved in the serotonergic transmission are major candidates in association studies of suicidal behavior. The gene that codes for tryptophan hydroxylase (TPH), the rate-limiting enzyme in the biosynthesis of serotonin, is one of these candidates. Two polymorphisms in intron 7 of this gene (A218C and A779C) have been described, but their role in suicidal behavior remains uncertain. TPH A218C polymorphism was analyzed in a sample of 248 psychiatric patients and 63 healthy controls. In addition, at least one close relative member was interviewed to assess family suicidal behavior history. Our research confirmed that a positive history of suicide attempts in a family member is associated with the chance of an individual to attempt suicide. Furthermore, we demonstrated that familial suicide attempts are more lethal and frequently more violent. We were not able to find significant differences of the TPH genotype frequencies between patients and controls. The TPH A218C genotypes were not associated with a history of suicide attempt and the lethality of the most lethal lifetime suicide attempt and suicide attempt method. The authors conclude that the A218C polymorphism of the TPH gene may not be a susceptibility factor for suicidal behavior in this group of psychiatric patients but confirm that a family suicidal behavior history increases the proband's suicide attempt risk. 相似文献
14.
Cell-type specific induction of tryptophan hydroxylase-2 transcription by calcium mobilization 总被引:1,自引:0,他引:1
Remes Lenicov F Lemonde S Czesak M Mosher TM Albert PR 《Journal of neurochemistry》2007,103(5):2047-2057
15.
Chanut E Nguyen-Legros J Labarthe B Trouvin JH Versaux-Botteri C 《Journal of neurochemistry》2002,83(4):863-869
Retinal circadian rhythms are driven by an intrinsic oscillator, using chemical signals such as melatonin, secreted by photoreceptor cells. The purpose of the present work was to identify the origin of serotonin, the precursor of melatonin, in the retina of adult rat, where no immunoreactivity for serotonin or tryptophan hydroxylase had ever been detected. To demonstrate local synthesis of serotonin in the rat retina, substrates of tryptophan hydroxylase, the first limiting enzyme in the serotonin pathway, have been used. Tryptophan, in the presence of an inhibitor of aromatic amino acid decarboxylase, enhanced 5-hydroxytryptophan levels, whereas alpha-methyltryptophan, a competitive substrate inhibitor, was hydroxylated into alpha-methyl-5-hydroxytryptophan. Tryptophan hydroxylase substrate concentration was higher in the dark period than in the light period, and formation of hydroxylated compounds was increased. The presence of tryptophan hydroxylase mRNA in the rat retina was confirmed by RT-PCR. Taken together, the results support the local synthesis of serotonin by tryptophan hydroxylation, this metabolic pathway being required more critically when 5-HT is used for melatonin synthesis. 相似文献
16.
17.
Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster 总被引:1,自引:0,他引:1
In Drosophila, one enzyme (Drosophila tryptophan-phenylalanine hydroxylase, DTPHu) hydroxylates both tryptophan to yield 5-hydroxytryptophan, the first step in serotonin synthesis, and phenylalanine, to generate tyrosine. Analysis of the sequenced Drosophila genome identified an additional enzyme with extensive homology to mammalian tryptophan hydroxylase (TPH), which we have termed DTRHn. We have shown that DTRHn can hydroxylate tryptophan in vitro but displays differential activity relative to DTPHu when using tryptophan as a substrate. Recent studies in mice identified the presence of two TPH genes, Tph1 and Tph2, from distinct genetic loci. Tph1 represents the non-neuronal TPH gene, and Tph2 is expressed exclusively in the brain. In this article, we show that DTRHn is neuronal in expression and function and thus represents the Drosophila homologue of Tph2. Using a DTRHn-null mutation, we show that diminished neuronal serotonin affects locomotor, olfactory and feeding behaviors, as well as heart rate. We also show that DTPHu functions in vivo as a phenylalanine hydroxylase in addition to its role as the peripheral TPH in Drosophila, and is critical for non-neuronal developmental events. 相似文献
18.
Tph2 gene deletion enhances amphetamine‐induced hypermotility: effect of 5‐HT restoration and role of striatal noradrenaline release 下载免费PDF全文
Mirjana Carli Chrysaugi Kostoula Giuseppina Sacchetti Pierangela Mainolfi Alessia Anastasia Claudia Villani Roberto William Invernizzi 《Journal of neurochemistry》2015,135(4):674-685
19.
Annotation of the sequenced Drosophila genome suggested the presence of an additional enzyme with extensive homology to mammalian tryptophan hydroxylase, which we have termed DTRH. In this work, we show that enzymatic analyses of the putative DTRH enzyme expressed in Escherichia coli confirm that it acts as a tryptophan hydroxylase but can also hydroxylate phenylalanine, in vitro. Building upon the knowledge gained from the work in mice and zebrafish, it is possible to hypothesize that DTRH may be primarily neuronal in function and expression, and DTPH, which has been previously shown to have phenylalanine hydroxylation as its primary role, may be the peripheral tryptophan hydroxylase in Drosophila. The experiments presented in this report also show that DTRH is similar to DTPH in that it exhibits differential hydroxylase activity based on substrate. When DTRH uses tryptophan as a substrate, substrate inhibition, catecholamine inhibition, and decreased tryptophan hydroxylase activity in the presence of serotonin synthesis inhibitors are observed. When DTRH uses phenylalanine as a substrate, end product inhibition, increased phenylalanine hydroxylase activity after phosphorylation by cAMP-dependent protein kinase, and a decrease in phenylalanine hydroxylase activity in the presence of the serotonin synthesis inhibitor, alpha-methyl-(DL)-tryptophan are observed. These experiments suggest that the presence of distinct tryptophan hydroxylase enzymes may be evolutionarily conserved and serve as an ancient mechanism to appropriately regulate the production of serotonin in its target tissues. 相似文献