首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Memory T cells exhibit a high degree of heterogeneity in terms of their phenotype and functional characteristics. It has been proposed that the CCR7 chemokine receptor divides memory T cell populations into central memory T cells and effector memory T cells with distinct functions in secondary immune responses. We were interested whether this hypothesis holds true in experiments performed on Ag-specific CD8(+) T cells. To identify CCR7(+) cells, we engineered a fluorescent ligand for CCR7; results with the new CC chemokine ligand 19 chemotetramer were verified by staining with a CCR7 mAb. Staining with the CC chemokine ligand 19 chemotetramer reveals two subsets within CCR7(+) cells: a CCR7(int) population containing memory cells and a CCR7(high) population containing naive T cells. Phenotypic analysis of MHC class I/peptide tetramer-positive cells revealed that HLA-A2-restricted CMV-specific CD8 T cells exhibit the lowest percentage of CCR7(+) cells (0.5-5%), while HLA-A2-restricted flu- and HLA-B8-restricted EBV-specific CD8 T cells showed the highest (45-70%). Intracellular staining of unstimulated cells revealed that both CCR7(int)- and CCR7(-)-specific CD8 T cells exhibit a detectable level of perforin. Both CCR7(int) and CCR7(-) Ag-specific CD8(+) T cells produced IFN-gamma and TNF-alpha following short-term peptide stimulation. Therefore, our finding that CCR7(+)CD8(+) T cells are able to exert immediate effector functions requires a substantial revision to the central and effector memory hypothesis.  相似文献   

2.
Multicolor flow cytometric analysis for the expression of three effector molecules, i.e., perforin (Per), granzyme A (GraA), and granzyme B (GraB), in human CD8(+) T cells demonstrated that they included five subpopulations, implying the following pathway for the differentiation of CD8(+) T cells: Per(-)GraA(-)GraB(-)-->Per(-)GraA(+)GraB(-)-->Per(low)GraA(+)GraB(-)--> Per(low)GraA(+)GraB(+)-->Per(high)GraA(+)GraB(+). The analysis of the expression of these molecules in the subsets classified by the combination of the expression of CCR7 and CD45RA or by that of CD27, CD28, and CD45RA showed that functional CD8(+) T cell subsets could be partially identified by these phenotypic classifications. However, the functional subsets could be precisely identified by the classification using five cell surface markers or three cell surface markers and three cytolytic molecules. Per(-)GraA(-)GraB(-) and Per(-/low)GraA(+)GraB(-) cells were predominantly found in CCR5(-)CCR7(+) and CCR5(high/low)CCR7(-) subsets, respectively, of CD8(+) T cells expressing the CD27(+)CD28(+)CD45RA(-) phenotype, whereas Per(low)GraA(+)GraB(+) cells were found in the CCR5(low)CCR7(-) subset of those expressing this phenotype and in a part of the CCR5(-/low)CCR7(-) subset of those expressing the CD27(-/low)CD28(-)CD45RA(-/+) phenotype. Ex vivo EBV-specific CD8(+) T cells, which were Per(low/-)GraA(+)GraB(-/+) cells, hardly or very weakly killed the target cells, indicating that these were not effector T cells. These findings suggest that the Per(-)GraA(-)GraB(-), Per(-/low)GraA(+)GraB(-), and Per(low)GraA(+)GraB(+) cells were central memory, early effector memory, and late effector memory T cells, respectively. Per(-/low)GraA(+)GraB(-) cells gained GraB expression after TCR stimulation, indicating that early effector memory T cells could differentiate into late effector and effector T cells. The present study showed the existence of three memory subsets and the pathway for their differentiation.  相似文献   

3.
Previous studies of perforin expression and cytokine production in subsets of peripheral human CD45RA(-)CD8(+) T cells with different CD28/CD27 phenotypes showed that CD28(+)CD45RA(-)CD8(+) and CD27(+)CD45RA(-)CD8(+) T cells have characteristics of memory T cells, whereas CD28(-)CD45RA(-)CD8(+) and CD27(-)CD45RA(-)CD8(+) T cells have characteristics of both memory and effector T cells. However, the differentiation pathway from memory CD8(+) T cells into memory/effector CD8(+) T cells has not been completely clarified. We investigated this differentiation pathway using EBV- and human CMV (HCMV)-specific CD8(+) T cells. Three subsets of CD45RA(-)CD8(+) T cells were observed in both total CD8(+) T cells and EBV- or HCMV-specific CD8(+) T cells: CD27(+)CD28(+), CD27(+)CD28(-), and CD27(-)CD28(-). A significant number of the CD27(-)CD28(+) subset was observed in total CD8 T cells. However, this subset was barely detectable in EBV- or HCMV-specific CD8(+) T cells. Analysis of perforin expression and cytotoxic activity in the first three subsets suggested the following differentiation pathway: CD27(+)CD28(+)CD45RA(-)-->CD27(+)CD28(-)CD45RA(-)-->CD27(-)CD28(-)CD45RA(-). This was supported by the observation that the frequency of CCR5(+) cells and CCR7(+) cells decreased during this sequence. Analysis of CCR5 and CCR7 expression in the CD27(+)CD28(+) memory cell subset demonstrated the presence of three CCR5/CCR7 populations: CCR5(-)CCR7(+), CCR5(+)CCR7(+), and CCR5(+)CCR7(-). These findings suggested the following differentiation pathway: CD27(+)CD28(+)CD45RA(-) (CCR5(-)CCR7(+)-->CCR5(+)CCR7(+)-->CCR5(+)CCR7(-))-->CD27(+)CD28(-)CD45RA(-)-->CD27(-)CD28(-)CD45RA(-). The presence of a CD27(-)CD28(+) subset with a CCR5(+)CCR7(-) phenotype implies a specialized role for this subset in the differentiation of CD8(+) T cells.  相似文献   

4.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

5.
IL-8 is a potent inflammatory cytokine that induces chemotaxis of neutrophils expressing CXCR1 and CXCR2, thus indicating its involvement in the migration of these cells to inflammatory sites where bacteria proliferate. Presently, we showed that CXCR1(+) cells were predominantly found among CD8(+) T cells having effector phenotype, and that the expression of CXCR1 was positively correlated with that of perforin, suggesting that CXCR1 is expressed on effector CD8(+) T cells. Indeed, human CMV-specific CD8(+) T cells from healthy individuals, which mostly express the effector phenotype and have cytolytic function, expressed CXCR1, whereas EBV-specific CD8(+) T cells, which mostly express the memory phenotype and have no cytolytic function, did not express this receptor. The results of a chemotaxis assay showed that the migration of CXCR1(+)CD8(+) T cells was induced by IL-8. These results suggest that the IL-8-CXCR1 pathway plays an important role in the homing of effector CD8(+) T cells.  相似文献   

6.
Jakmip1 belongs to a family of three related genes encoding proteins rich in coiled-coils. Jakmip1 is expressed predominantly in neuronal and lymphoid cells and colocalizes with microtubules. We have studied the expression of Jakmip1 mRNA and protein in distinct subsets of human primary lymphocytes. Jakmip1 is absent in naive CD8(+) and CD4(+) T lymphocytes from peripheral blood but is highly expressed in Ag-experienced T cells. In cord blood T lymphocytes, induction of Jakmip1 occurs upon TCR/CD28 stimulation and parallels induction of effector proteins, such as granzyme B and perforin. Further analysis of CD8(+) and CD4(+) T cell subsets showed a higher expression of Jakmip1 in the effector CCR7(-) and CD27(-) T cell subpopulations. In a gene expression follow-up of the development of CMV-specific CD8(+) response, Jakmip1 emerged as one of the most highly up-regulated genes from primary infection to latent stage. To investigate the relationship between Jakmip1 and effector function, we monitored cytotoxicity of primary CD8(+) T cells silenced for Jakmip1 or transduced with the full-length protein or the N-terminal region. Our findings point to Jakmip1 being a novel effector memory gene restraining T cell-mediated cytotoxicity.  相似文献   

7.
Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector cells and as such have lost all proliferative capacity. We show in this study, however, that stimulation of CMV-specific CD45RA(+)CD27(-)CCR7(-) T cells with their cognate peptide in concert with either CD4(+) help or IL-2, IL-15, or IL-21 in fact induces massive clonal expansion. Concurrently, these stimulated effector T cells change cell surface phenotype from CD45RA to CD45R0 and regain CCR7, while effector functions are maintained. Our data imply that CD45RA(+)CD27(-)CCR7(-) effector-type T cells contribute to immunity not only by direct execution of effector functions, but also by yielding progeny in situations of viral reinfection or reactivation.  相似文献   

8.
The chemokine receptor CCR7 is a key factor in the coordinate migration of T cells and dendritic cells (DC) into and their localization within secondary lymphoid organs. In this study we investigated the impact of CCR7 on CD8(+) T cell responses by infecting CCR7(-/-) mice with lymphocytic choriomeningitis virus (LCMV). We found that the absence of CCR7 affects the magnitude of an antiviral CTL response during the acute phase, with reduced numbers of virus-specific CTL in all lymphoid and nonlymphoid organs tested. On the single cell level, CCR7-deficient CTL gained full effector function, such that antiviral protection in CCR7-deficient mice was complete, but delayed. Similarly, adoptive transfer experiments using DC from CCR7-deficient or competent mice for the priming of CCR7-positive or CCR7-negative CD8(+) T cells, respectively, revealed that ectopic positioning of DC and CTL outside organized T cell zones results in reduced priming efficacy. In the memory phase, CCR7-deficient mice maintained a stable LCMV-specific CTL population, predominantly in nonlymphoid organs, and rapidly mounted protective CTL responses against a challenge infection with a vaccinia virus recombinant for the gp33 epitope of LCMV. Taken together, the CCR7-dependent organization of the T cell zone does not appear to be a prerequisite for antiviral effector CTL differentiation and the sustenance of antiviral memory responses in lymphoid or peripheral tissues.  相似文献   

9.
10.
Memory CD8(+) T cell responses are thought to be more effective as a result of both a higher frequency of Ag-specific clones and more rapid execution of effector functions such as granule-mediated lysis. Murine models have indicated that memory CD8(+) T cells exhibit constitutive expression of perforin and can lyse targets directly ex vivo. However, the regulated expression of cytotoxic granules in human memory CD8(+) T cell subsets has been underexplored. Using intracellular flow cytometry, we observed that only a minor fraction of CD45RA(-)CD8(+) T cells, or of CD8(+) T cells reactive to EBV-HLA2 tetramer, expressed intracellular granzyme B (GrB). Induction of GrB-containing cytotoxic granules in both CD45RA(+) and CD45RA(-) cells was achieved by stimulation with anti-CD3/anti-CD28 mAb-coated beads, required at least 3 days, occurred after several rounds of cell division, and required cell cycle progression. The strongest GrB induction was seen in the CCR7(+) subpopulations, with poorest proliferation being observed in the CD45RA(-)CCR7(-) effector-memory pool. Our results indicate that, as with naive T cells, induction of cytotoxic granules in human Ag-experienced CD8(+) T cells requires time and cell division, arguing that the main numerical advantage of a memory T cell pool is a larger frequency of CTL precursors. The fact that granule induction can be achieved through TCR and CD28 ligation has implications for restoring lytic effector function in the context of antitumor immunity.  相似文献   

11.
Although mouse studies have demonstrated the presence of an effector memory population in nonlymphoid tissues, the phenotype of human CD8(+) T cells present in such compartments has not been characterized. Because of the relatively large number of CD8(+) T cells present in breast milk, we were able to characterize the phenotype of this cell population in HIV-infected and uninfected lactating women. CMV, influenza virus, EBV, and HIV-specific CD8(+) T cells as measured by the IFN-gamma ELISPOT and MHC class I tetramer staining were all present at greater frequencies in breast milk as compared with blood. Furthermore, a greater percentage of the breast milk CD8(+) T cells expressed the intestinal homing receptor, CD103, and the mucosal homing receptor CCR9. Breast milk T cells were predominantly CD45RO(+)HLADR(+) and expressed low levels of CD45RA, CD62L, and CCR7 consistent with an effector memory population. Conversely, T cells derived from blood were mainly characterized as central memory cells (CCR7(+)CD62L(+)). These results demonstrate a population of extralymphoid CD8(+) T cells with an effector memory phenotype in humans, which could contribute to enhanced local virologic control and the relative lack of HIV transmission via this route.  相似文献   

12.
The role of virus-specific T cells in hepatitis C virus (HCV) pathogenesis is not clear. Existing knowledge on the frequency, phenotype, and behavior of these cells comes from analyses of blood and liver, but other lymphoid compartments that may be important sites for functionally mature T cells have not yet been analyzed. We studied HCV-specific T cells from bone marrow, in comparison to those from peripheral blood and liver biopsy tissue, from 20 persistently HCV-infected patients with benign hematological disorders. Bone marrow contained a sizeable pool of CD8(+) T cells specific for epitopes from structural and nonstructural HCV proteins. These cells displayed the same effector memory phenotype as liver-derived equivalents and the same proliferative potential as blood-derived equivalents but had greater antiviral effector functions such as Ag-specific cytotoxicity and IFN-gamma production. These features were not shared by influenza virus-specific CD8(+) T cells in the same bone marrow samples. Despite their highly differentiated phenotype and activated status, some bone marrow-resident HCV-specific CD8(+) T cells were not directed against the infecting virus but, instead, against historical HCV Ags (i.e., viral species of a previous infection or minor viral species of the current infection). These findings provide a snapshot view of the distribution, differentiation, and functioning of virus-specific memory T cells in patients with persistent HCV infection.  相似文献   

13.
CMV-specific memory CD8(+) T cells accumulate over time to reach high frequencies amongst peripheral blood lymphocytes - a phenomenon termed 'memory inflation'. Using tetramer staining on samples from a large number of subjects and multivariate regression analysis, we were able to relate this to the phenotype of CD8(+) T cells. We made the following observations: (i) CD85j (ILT-2/LIR-1) was highly expressed alongside CD57 - an established effector memory marker - on CMV-specific CD8(+) T cells; (ii) on CD8(+) T cells as a whole, with increasing age, CD57 and CD85j (ILT-2/LIR-1) expression increased whereas CCR7 expression decreased, indicating increasing maturation of the total CD8(+) T-cell compartment with age; (iii) unit increases in the percentage of CMV-specific CD8(+) T cells expressing CD57 and CD85j (ILT-2/LIR-1) were associated with incremental expansion of these T-cell populations; (iv) CMV seropositivity is associated with a marked effect on the overall phenotype of CD8(+) T cells (at any given age, CMV seropositivity is associated with an 18.7% increase in CD85j (ILT-2/LIR-1) expression); and (v) from our observations we estimated from this an apparent 'ageing effect' of CMV on CD8(+) T cells of 35.4 years. The data presented are consistent with a predictable, unidirectional and linear model of virus specific T-cell differentiation and maturation.  相似文献   

14.
15.
CTL are crucial in the defense against viral infections. In the course of investigating peripheral blood and intrahepatic CD8 T cells in patients with chronic hepatitis C virus (HCV) infection, we observed a significant population of CD8 T cells expressing the FcgammaRIIIA (CD16) receptor. This observation led us to characterize these cells with respect to their phenotype and function in a cohort of patients with chronic HCV infection as well as in healthy blood donors. On average, 10% of peripheral blood CD8 T cells from HCV-infected patients expressed CD16 compared with only a few percent in healthy donors. CD16(+) CD8 T cells displayed a late-stage effector phenotype with high levels of perforin. These cells exhibited a restricted TCR profile suggesting underlying clonal expansion. Stimulation of CD16 on CD8 T cells evoked a vigorous response similar to that of CD16 stimulation in NK cells. Our data suggest that CD8 T cells, during chronic HCV infection in humans, continue to differentiate beyond defined stages of terminal effector cells, acquiring CD16 and NK cell-like functional properties.  相似文献   

16.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

17.
Because the chemokine receptor CCR5 is expressed on Th1 CD4(+) cells, it is important to investigate the expression and function of this receptor on other T cells involved in Th1 immune responses, such as Ag-specific CD8(+) T cells, which to date have been only partially characterized. Therefore, we analyzed the expression and function of CCR5 on virus-specific CD8+ T cells identified by HLA class I tetramers. Multicolor flow cytometry analysis demonstrated that CCR5 is expressed on memory (CD28+CD45RA-) and effector (CD28-CD45RA- and CD28-CD45RA+) CD8+ T cells but not on naive (CD28+CD45RA+) CD8+ T cells. CCR5 expression was much lower on two effector CD8+ T cells than on memory CD8+ T cells. Analysis of CCR7 and CCR5 expression on the different types of CD8+ T cells showed that memory CD8+ T cells have three phenotypic subsets, CCR5+CCR7-, CCR5+CCR7+, and CCR5-CCR7+, while naive and effector CD8+ T cells have CCR5-CCR7+ and CCR5+CCR7- phenotypes, respectively. These results suggest the following sequence for differentiation of memory CD8+ T cells: CCR5-CCR7+-->CCR5+CCR7+-->CCR5+CCR7-. CCR5+CD8+ T cells effectively migrated in response to RANTES, suggesting that CCR5 plays a critical role in the migration of Ag-specific effector and differentiated memory CD8+ T cells to inflammatory tissues and secondary lymphoid tissues. This is in contrast to CCR7, which functions as a homing receptor in migration of naive and memory CD8+ T cells to secondary lymphoid tissues.  相似文献   

18.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease that is caused by mutations in the AIRE gene. Murine studies have linked AIRE to thymocyte selection and peripheral deletional tolerance, but the pathogenesis of the human disease remains unclear. In this study, we show that APECED patients have elevated IL-7 levels and a drastically decreased expression of IL-7R on CD8(+) T cells. This is associated with increased proliferation and a decreased expression of the negative TCR regulator CD5 in the CD45RO(-) subset. The CD45RO(-) cells also display oligoclonal expansions, decreased expression of the lymph node homing factors CCR7 and CD62L, and increased expression of perforin, consistent with the accumulation of highly differentiated effector cells. The CD45RO(-)CCR7(+)CD8(+) population of cells with markers characteristic of naive phenotype is also skewed, as shown by decreased expression of CD5 and increased expression of perforin. The putative CD31(+) recent thymic emigrant population is likewise affected. These data are consistent with IL-7 dysregulation inducing a decreased threshold of TCR signaling and self-antigen-driven proliferation, probably in synergy with the failed thymic selection. The resultant loss of CD8(+) T cell homeostasis is likely to play a significant role in the pathogenesis of APECED. Our findings may also hold lessons for other diseases in which the IL-7-IL-7R pathway has emerged as a risk factor.  相似文献   

19.
Healthy young children who acquire CMV have prolonged viral shedding into the urine and saliva, but whether this is attributable to limitations in viral-specific immune responses has not been explored. In this study, we found that otherwise immunocompetent young children after recent primary CMV infection accumulated markedly fewer CMV-specific CD4(+) T cells that produced IFN-gamma than did adults. These differences in CD4(+) T cell function persisted for more than 1 year after viral acquisition, and did not apply to CMV-specific IFN-gamma production by CD8(+) T cells. The IFN-gamma-producing CD4(+) T cells of children or adults that were reactive with CMV Ags were mainly the CCR7(low) cell subset of memory (CD45R0(high)CD45RA(low)) cells. The decreased IFN-gamma response to CMV in children was selective, because their CCR7(low) memory CD4(+) T cells and those of adults produced similar levels of this cytokine after stimulation with staphylococcal enterotoxin B superantigen. CD4(+) T cells from children also had reduced CMV-specific IL-2 and CD154 (CD40 ligand) expression, suggesting an early blockade in the differentiation of viral-specific CD4(+) T cells. Following CMV acquisition, children, but not adults, persistently shed virus in urine, and this was observable for at least 29 mo postinfection. Thus, CD4(+) T cell-mediated immunity to CMV in humans is generated in an age-dependent manner, and may have a substantial role in controlling renal viral replication and urinary shedding.  相似文献   

20.
Two functionally different memory T cell subsets were originally defined based on their different CCR7 expression profile, but the lineage relationship between these subsets referred to as central memory T cells (T(CM)) and effector memory T cells (T(EM)), is not resolved. A prevalent model proposes a linear progressive differentiation from T(CM) to T(EM). Our results demonstrate that on activation, human CCR7-CD62L- peripheral blood CD8+ and CD4+ T(EM) cells exhibit a dynamic differentiation, involving transient as well as stable changes to T(CM) phenotype and properties. Whereas the larger fraction of T(EM) cells increases expression of effector molecules, such as perforin or IFN-gamma, a smaller fraction first acquires CCR7 expression. We demonstrate that this acquisition of lymph node homing potential is associated with strong proliferation similar to that of activated T(CM) cells. After proliferation, most of these cells lose CCR7 expression again and acquire effector functions (e.g., perforin production). A small proportion (approximately 6%), however, maintain phenotypic and functional T(CM) properties over a long time interval. These results suggest that T(EM) cells provide immediate effector function by a fraction of cells as well as self-renewal by others through up-regulation of CCR7 followed by either secondary peripheral effector function or long term maintenance of T(CM)-like properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号