首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The group of natural aromatic compounds known as phenylpropanoids has diverse applications, but current methods of production which are largely based on synthesis from petrochemicals or extraction from agricultural biomass are unsustainable. Bioprocessing is a promising alternative, but improvements in production titers and rates are required to make this method profitable. Here the recent advances in genetic engineering and bioprocess concepts for the production of phenylpropanoids are presented for the purpose of identifying successful strategies, including adaptive laboratory evolution, enzyme engineering, in-situ product removal, and biocatalysis. The pros and cons of bacterial and yeast hosts for phenylpropanoid production are discussed, also in the context of different phenylpropanoid targets and bioprocess concepts. Finally, some broad recommendations are made regarding targets for continued improvement and areas requiring specific attention from researchers to further improve production titers and rates.  相似文献   

2.
Know-how and know-why in biochemical engineering   总被引:3,自引:0,他引:3  
This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.  相似文献   

3.
Bioprocess engineering: now and beyond 2000   总被引:1,自引:0,他引:1  
Abstract: Bioprocess engineering may be defined as the translation of life-science discoveries into practical products, processes, or systems capable of serving the needs of society. It is a critical link from discovery to commercialization. Current bioprocess engineering is primarily focused on biopharmaceutical products of high dollar value per gram such as erythropoietin or growth hormones. However, other products of current interest include ethanol, amino acids, organic acids, antibiotics, and specialty chemicals. Current challenges for increased use of bioprocesses for producing bulk and semi-bulk chemicals include both technical and infrastructural barriers. Technical barriers are easy to identify and at times can be overcome by engineering improvements or changes brought about radical developments in science (e.g. recombinant DNA). Infrastructural barriers, such as raw-material substitutions or educational limitations are more difficult to define and change. Recently the National Academy of Sciences examined barriers to bioprocess engineering and issued a report entitled: "Putting Biotechnology to Work: Bioprocess Engineering". A key recommendation was the establishment of a coordinated long-range plan of research, development, training and education in bioprocess engineering involving participation by industry, academe and the federal government. The report was the first national analysis devoted entirely to bioprocess engineering and covered new topics such as space bioprocess engineering. Other topics covered by the author include the current state of the US chemical industry and future directions in three promising areas of bioprocess engineering environmental bioprocess engineering, marine bioprocess engineering and microsystem bioprocess engineering.  相似文献   

4.
工业生物技术的进步离不开工业生物过程工程研究的不断深入及发展,我国作为工业发酵大国在工业生物技术由实验室向产业化转化过程中面对诸多挑战,由此而逐渐发展起来的我国工业生物过程工程发展先后经历了多个阶段,伴随着不同阶段的发展,我国的工业生物技术水平得到不断的提升。本文重点回顾了近三、四十年来我国工业生物过程工程发展的历程,包括早期由化工过程研究引入的动力学模型化研究、基于过程控制的优化理论与方法的应用、基于过程在线监测技术发展起来的参数相关性分析方法、过程多尺度理论的建立、基于现代固态发酵的新型固态发酵罐的设计及优化技术发展等。通过对生物过程工程发展历程的回顾对先进工业生物过程发展面临的技术难题及由此引出的未来发展重点方向进行了探讨。  相似文献   

5.
《Trends in biotechnology》2023,41(9):1199-1212
The use of bioprocesses in industrial production promises resource- and energy-efficient processes starting from renewable, nonfossil feedstocks. Thus, the environmental benefits must be demonstrated, ideally in the early development phase with standardized methods such as life cycle assessment (LCA). Herein we discuss selected LCA studies of early-stage bioprocesses, highlighting their potential and contribution to estimating environmental impacts and decision support in bioprocess development. However, LCAs are rarely performed among bioprocess engineers due to challenges such as data availability and process uncertainties. To address this issue, recommendations are provided for conducting LCAs of early-stage bioprocesses. Opportunities are identified to facilitate future applicability, for example, by establishing dedicated bioprocess databases that could enable the use of LCAs as standard tools for bioprocess engineers.  相似文献   

6.
One of the major aims of bioprocess engineering is the real-time monitoring of important process variables. This is the basis of precise process control and is essential for high productivity as well as the exact documentation of the overall production process. Infrared spectroscopy is a powerful analytical technique to analyze a wide variety of organic compounds. Thus, infrared sensors are ideal instruments for bioprocess monitoring. The sensors are non-invasive, have no time delay due to sensor response times, and have no influence on the bioprocess itself. No sampling is necessary, and several components can be analyzed simultaneously. In general, the direct monitoring of substrates, products, metabolites, as well as the biomass itself is possible. In this review article, insights are provided into the different applications of infrared spectroscopy for bioprocess monitoring and the complex data interpretation. Different analytical techniques are presented as well as example applications in different areas.  相似文献   

7.
Systems biology is an integrative science that aims at the global characterization of biological systems. Huge amounts of data regarding gene expression, proteins activity and metabolite concentrations are collected by designing systematic genetic or environmental perturbations. Then the challenge is to integrate such data in a global model in order to provide a global picture of the cell. The analysis of these data is largely dominated by nonparametric modelling tools. In contrast, classical bioprocess engineering has been primarily founded on first principles models, but it has systematically overlooked the details of the embedded biological system. The full complexity of biological systems is currently assumed by systems biology and this knowledge can now be taken by engineers to decide how to optimally design and operate their processes. This paper discusses possible methodologies for the integration of systems biology and bioprocess engineering with emphasis on applications involving animal cell cultures. At the mathematical systems level, the discussion is focused on hybrid semi-parametric systems as a way to bridge systems biology and bioprocess engineering.  相似文献   

8.
Studies of a bioprocess optimization and monitoring for protein synthesis in animal cells face a challenge on how to express in quantitative terms the system performance. It is possible to have a panel of calculated variables that fits more or less appropriately the intended goal. Each mathematical expression approach translates different quantitative aspects. We can basically separate them into two categories: those used for the evaluation of cell physiology in terms of product synthesis, which can be for bioprocess improvement or optimization, and those used for production unit sizing and for bioprocess operation. With these perspectives and based on our own data of kinetic S2 cells growth and metabolism, as well as on their synthesis of the transmembrane recombinant rabies virus glycoprotein, here indicated as P, we show and discuss the main characteristics of calculated variables and their recommended use. Mainly applied to a bioprocess improvement/optimization and that mainly used for operation definition and to design the production unit, we expect these definitions/recommendations would improve the quality of data produced in this field and lead to more standardized procedures. In turn, it would allow a better and easier comprehension of scientific and technological communications for specialized readers.  相似文献   

9.
Stem cells are promising cell sources for many biomedical applications including cell therapy, regenerative medicine, and drug discovery. However, the commonly used static tissue culture vessels can only generate a low number of cells. To provide an adequate number of stem cells for clinical applications, a scalable process based on bioreactors is needed. Stem cells can be either cultured as free cells/aggregates in suspension or as adherent cells on the solid substrates. Based on the cell property, different bioreactor configurations are developed to better expand stem cells while maintaining their differentiation capacity. In this review, several major types of bioreactor systems and their applications in stem cell engineering are discussed. Continued advancements in bioprocess and bioreactor research and development are important to engineer stem cells for their use in biomedical applications.  相似文献   

10.
Enzyme technology and bioprocess engineering   总被引:4,自引:0,他引:4  
The impact of directed evolution and site-specific mutagenesis on the industrial utility of enzymatic catalysis through the modification of enzyme structure and function is clearly an important area of research in bioprocess engineering. High-throughput screening for novel or improved enzyme activities, both by more efficiently exploring nature's diversity and by creating new diversity in the test tube, allows new bioprocesses to be developed. Similarly, innovations in enzyme technology that address novel ways to apply enzymes in bioprocesses also have an impact on bioprocess engineering. Several recent developments have been made in this latter aspect of bioprocess engineering.  相似文献   

11.
The combination of web technology, knowledge of bioprocess engineering, and theories on learning and instruction might yield innovative learning material for bioprocess engineering. In this article, an overview of the characteristics of web-based learning material is given, as well as guidelines for the design of learning material from theories of learning and instruction and from the bioprocess engineering domain. A diverse body of learning material is presented, which illustrates the application of these guidelines; this material has been developed during the past six years for different courses, mostly at undergraduate level, and it illustrates how web-based learning material can enable various different approaches to learning objectives that might improve overall learning. Such learning material has been used for several years in education, it has been evaluated with positive results, and is now part of the regular learning material for bioprocess engineering at Wageningen University.  相似文献   

12.
This regular issue of BTJ includes articles on biocatalysis, biochemical engineering, and bioprocess engineering. This cover page highlights the applications of biomolecules (e.g., proteins, enzymes, and DNA) in ionic liquids (ILs). The technological utility of biomolecules can be enhanced significantly by combining them with ILs. Image is provided by Magaret Sivapragasam, Muhammad Moniruzzaman, and Masahiro Goto authors of ”Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications“ ( http://dx.doi.org/10.1002/biot.201500603 ).  相似文献   

13.
Increasing numbers of value added chemicals are being produced using microbial fermentation strategies. Computational modeling and simulation of microbial metabolism is rapidly becoming an enabling technology that is driving a new paradigm to accelerate the bioprocess development cycle. In particular, constraint-based modeling and the development of genome-scale models of industrial microbes are finding increasing utility across many phases of the bioprocess development workflow. Herein, we review and discuss the requirements and trends in the industrial application of this technology as we build toward integrated computational/experimental platforms for bioprocess engineering. Specifically we cover the following topics: (1) genome-scale models as genetically and biochemically consistent representations of metabolic networks; (2) the ability of these models to predict, assess, and interpret metabolic physiology and flux states of metabolism; (3) the model-guided integrative analysis of high throughput ‘omics’ data; (4) the reconciliation and analysis of on- and off-line fermentation data as well as flux tracing data; (5) model-aided strain design strategies and the integration of calculated biotransformation routes; and (6) control and optimization of the fermentation processes. Collectively, constraint-based modeling strategies are impacting the iterative characterization of metabolic flux states throughout the bioprocess development cycle, while also driving metabolic engineering strategies and fermentation optimization.  相似文献   

14.
An alternating tangential flow (ATF) perfusion-based transient gene expression (TGE) bioprocess has been developed using human embryonic kidney (HEK) 293 cells to produce H1-ss-np, a promising candidate for a universal influenza vaccine. Two major adjustments were taken to improve the process: (1) eliminate the interference of microbubbles during gene transfection; and (2) utilize an ATF perfusion system for a prolonged culture period. As a result, a closed-operation 9-days ATF perfusion-based TGE bioprocess was developed. The TGE bioprocess showed continuous cell growth with high cell viability and prolonged cellular productivity that achieved recombinant product level of ~270 mg/L which was more than two times that of 4-days base-line TGE bioprocess. In addition, the consumables cost per milligram for ATF perfusion-based TGE bioprocess was ~70% lower than that of the base-line TGE bioprocess suggesting high cost savings potential in vaccine manufacturing. Based on the lower contamination risk, higher productivity, and cost efficiency, the ATF perfusion-based TGE bioprocess can likely provide potential benefits to many future applications in vaccine and drug manufacturing.  相似文献   

15.
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.  相似文献   

16.
17.
Access to real-time process information is desirable for consistent and efficient operation of bioprocesses. Near-infrared spectroscopy (NIRS) is known to have potential for providing real-time information on the quantitative levels of important bioprocess variables. However, given the fact that a typical NIR spectrum encompasses information regarding almost all the constituents of the sample matrix, there are few case studies that have investigated the spectral details for applications in bioprocess quality assessment or qualitative bioprocess monitoring. Such information would be invaluable in providing operator-level assistance on the progress of a bioprocess in industrial-scale productions. We investigated this aspect and report the results of our investigation. Near-infrared spectral information derived from scanning unprocessed culture fluid (broth) samples from a complex antibiotic production process was assessed for a data set that incorporated bioprocess variations. Principal component analysis was applied to the spectral data and the loadings and scores of the principal components studied. Changes in the spectral information that corresponded to variations in the bioprocess could be deciphered. Despite the complexity of the matrix, near-infrared spectra of the culture broth are shown to have valuable information that can be deconvoluted with the help of factor analysis techniques such as principal component analysis (PCA). Although complex to interpret, the loadings and score plots are shown to offer potential in process diagnosis that could be of value in the rapid assessment of process quality, and in data assessment prior to quantitative model development.  相似文献   

18.
D-Mannitol is a sugar alcohol with applications in chemistry, food and pharmaceutical industries, and medicine. Commercially, mannitol is produced by catalytic hydrogenation. Although this process is widely used, it is not optimal for mannitol production. New processes, including chemical, enzymatic, and microbial processes, are frequently developed and evaluated against the existing hydrogenation processes. In earlier papers, we have described the identification of a food-grade lactic acid bacterium strain, Leuconostoc mesenteroides ATCC-9135, with efficient mannitol production capabilities and the development and optimization of a new bioprocess in which the strain was applied. The new bioprocess is simple. It requires a reduced bioreactor with the following features: sterilization, pH and T control (at mild conditions), and slow mixing. The contamination risk of the new bioprocess is low, and the downstream processing protocol comprises simple, widely used unit operations: evaporation, crystallization, crystal separation, and drying. On a 2-L laboratory scale, high mannitol yields from fructose (93-97%) and volumetric mannitol productivities (>20 g L(-1) h(-1)) were achieved. In this paper, the scalability of the new bioprocess was tested on a small pilot scale (100 L). In the pilot plant, production levels were achieved similar to those in the laboratory. Also, high-purity mannitol crystals were obtained at similar yield levels. The results presented in this paper indicate that the new bioprocess can easily be scaled-up to an industrial scale and that the production levels achieved with it are comparable to the catalytic hydrogenation processes.  相似文献   

19.
Affinity chromatography (AC) has been used in large‐scale bioprocessing for almost 40 years and is considered the preferred method for primary capture in downstream processing of various types of biopharmaceuticals. The objective of this mini‐review is to provide an overview of a) the history of bioprocess AC, b) the current state of platform processes based on affinity capture steps, c) the maturing field of custom developed bioprocess affinity resins, d) the advantages of affinity capture‐based downstream processing in comparison to other forms of chromatography, and e) the future direction for bioprocess scale AC. The use of AC can result in economic advantages by enabling the standardization of process development and the manufacturing processes and the use of continuous operations in flexible multiproduct production suites. These concepts are discussed from a growing field of custom affinity bioprocess resin perspective. The custom affinity resins not only address the need for a capture resin for non‐platformable processes, but also can be employed in polishing applications, where they are used to define and control drug substance composition by separating specific product variants from the desired product form.  相似文献   

20.
A B-cell epitope is the three-dimensional structure within an antigen that can be bound to the variable region of an antibody. The prediction of B-cell epitopes is highly desirable for various immunological applications, but has presented a set of unique challenges to the bioinformatics and immunology communities. Improving the accuracy of B-cell epitope prediction methods depends on a community consensus on the data and metrics utilized to develop and evaluate such tools. A workshop, sponsored by the National Institute of Allergy and Infectious Disease (NIAID), was recently held in Washington, DC to discuss the current state of the B-cell epitope prediction field. Many of the currently available tools were surveyed and a set of recommendations was devised to facilitate improvements in the currently existing tools and to expedite future tool development. An underlying theme of the recommendations put forth by the panel is increased collaboration among research groups. By developing common datasets, standardized data formats, and the means with which to consolidate information, we hope to greatly enhance the development of B-cell epitope prediction tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号