首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Handorf AM  Li WJ 《PloS one》2011,6(7):e22887
Human mesenchymal stem cells (hMSCs) are multipotent cells capable of differentiating into a variety of mature cell types, including osteoblasts, adipocytes and chondrocytes. It has previously been shown that, when expanded in medium supplemented with fibroblast growth factor-2 (FGF-2), hMSCs show enhanced chondrogenesis (CG). Previous work concluded that the enhancement of CG could be attributed to the selection of a cell subpopulation with inherent chondrogenic potential. In this study, we show that FGF-2 pretreatment actually primed hMSCs to undergo enhanced CG by increasing basal Sox9 protein levels. Our results show that Sox9 protein levels were elevated within 30 minutes of exposure to FGF-2 and progressively increased with longer exposures. Further, we show using flow cytometry that FGF-2 increased Sox9 protein levels per cell in proliferating and non-proliferating hMSCs, strongly suggesting that FGF-2 primes hMSCs for subsequent CG by regulating Sox9. Indeed, when hMSCs were exposed to FGF-2 for 2 hours and subsequently differentiated into the chondrogenic lineage using pellet culture, phosphorylated-Sox9 (pSox9) protein levels became elevated and ultimately resulted in an enhancement of CG. However, small interfering RNA (siRNA)-mediated knockdown of Sox9 during hMSC expansion was unable to negate the prochondrogenic effects of FGF-2, suggesting that the FGF-2-mediated enhancement of hMSC CG is only partly regulated through Sox9. Our findings provide new insights into the mechanism by which FGF-2 regulates predifferentiation hMSCs to undergo enhanced CG.  相似文献   

2.
Tube formation of endothelial cells is an important step of angiogenesis. However, little is known about the molecular mechanisms underlying growth factor-mediated tube formation by endothelial cells. FGF-2 stimulates tube formation by a murine brain capillary endothelial cell line, IBE cells, when cultured on collagen gels (differentiation-associated culture condition), whereas cells proliferate and migrate without forming tube on fibronectin-coated surface (proliferation/migration-associated condition). To elucidate FGF-2-mediated signal transduction pathways leading to tube formation by endothelial cells, we focused on the contribution of Src family kinases. Src family kinase inhibitor PP2 attenuated FGF-2-induced tube formation. Stable expression of kinase-inactive c-Src in IBE cells demonstrated no dominant negative effect on FGF-2-induced tube formation. In vitro kinase assay revealed that c-Fyn was activated by FGF-2 only in cells cultured on collagen gels. Three independent cell lines, expressing kinase-inactive c-Fyn, all exhibited attenuation of FGF-2-mediated tube formation. However, FGF-2-mediated proliferation or migration was not clearly perturbed in these cells. These results show the first time that c-Fyn plays a pivotal role in tube formation by endothelial cells.  相似文献   

3.
We have investigated the synergistic effects of phorbol ester and calcium ionophore on human T lymphocyte proliferation and the expression of the proliferation-related genes, c-myc, c-fos, interleukin 2 receptors (IL-2R) and interleukin 2 (IL-2). Incubation of T lymphocytes with both the phorbol ester, phorbol 12,13-dibutyrate (PDB), and the calcium ionophore, ionomycin, leads to the expression of a series of proliferation-related genes, followed by T cell proliferation. In contrast, stimulation of T cells sequentially with PDB and then ionomycin did not induce mitogenesis, demonstrating that simultaneous exposure to both agents is necessary for proliferation. Exposure of T cells to both agents together for different time periods resulted in a proliferative response in proportion to the duration of the exposure, with more than 6 hr required for maximum proliferation. In contrast, a 1-hr exposure to both drugs was sufficient for maximum expression of c-fos or c-myc proto-oncogene mRNA. The expression of IL-2R and the production of IL-2 were also dependent on the duration of simultaneous exposure to both phorbol ester and calcium ionophore. Levels of IL-2 mRNA became detectable at 1 hr and peaked at 3 hr after stimulation. The induction of IL-2 mRNA occurred only in the presence of both agents and became undetectable within 2 hr after the drugs were removed. In contrast, the expression of IL-2R mRNA became detectable at 1 hr, but was maintained even after the drugs were removed and reached a peak at 24 hr. Both IL-2 and IL-2R mRNA accumulated in proportion to the duration of the exposure. Augmentation of cell proliferation by exogenous IL-2 was observed in T cells exposed to the drugs for less than 3 hr. These data demonstrated that the induction of maximum expression of the nuclear proto-oncogenes c-myc and c-fos was not sufficient for PDB-ionomycin-induced T cell proliferation. The level of IL-2 mRNA accumulation and resultant IL-2 secretion is one of the limiting factors for proliferation of T cells exposed to the drugs for less than 3 hr, but not for longer exposures. Additional events such as accumulation of IL-2R mRNA and protein triggered by a long exposure to the drugs were obligatory for obtaining maximum proliferation.  相似文献   

4.
5.
The major problem in cell therapy is the possibility of viral or bacterial infection and immune reactions. Therefore, it is expected of culture cells which are intended to be re-implanted with autologous serum rather than conventional bovine serum. Cell therapy with human mesenchymal stem cells (hMSC), differentiating to various cells, is thought to be curative. To culture hMSC with human autologous serum (HAS) and re-implant them for cell therapy, we developed a completely closed bag system separating serum, comparing proliferation and multipotency of hMSC cultured in HAS with those in foetal calf serum (FCS). HAS was simply, safely and efficiently obtained with the developed closed bag system. Cell proliferation of hMSC cultured in HAS was greater than that in FCS. hMSC, exposed to the defined induction medium containing HAS as well as FCS, differentiated into osteoblasts and adipocytes. These findings suggest that HAS obtained with the developed closed bag system is advantageous in a point of decrease in risk of virus or bacterial infection and foreign protein contamination and enhancement of proliferation of hMSC.  相似文献   

6.
7.
8.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

9.
BACKGROUND: Although some cationic reagents, such as polybrene, improve gene transduction in vitro, their use in vivo is prohibited due to their toxicity to the exposed cells. This paper demonstrates that a new cationic reagent, poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLL), improves gene transduction with retroviral vectors without increasing cell toxicity. METHODS: A retroviral vector derived from the Moloney leukemia virus, containing the lacZ gene, was modified with PEG-PLL prior to transduction into NIH3T3, Lewis lung carcinoma, and primary cultured mouse brain cells. LacZ transduction efficacy was evaluated by counting the number of X-Gal-positive cells. RESULTS: We have demonstrated that PEG-PLL is able to stably modify the viral particle surface due to the affinity of the PEG moiety to the biomembrane, and neutralizes negative charges by the cationic nature of the poly-lysine residue. Thus, PEG-PLL increased the gene transduction efficiency and minimized cell toxicity because free PEG-PLL was removable by centrifugation. We have shown that PEG-PLL increased the viral gene transduction efficiency 3- to 7-fold with NIH3T3 or Lewis lung carcinoma cell lines without increasing cytotoxicity. It improved retroviral gene transduction efficacy even against labile cells, such as primary cultured brain cells. CONCLUSIONS: PEG-PLL is a novel reagent that improves retroviral gene transduction efficacy without increasing cytotoxicity.  相似文献   

10.
Endothelial cell growth is stimulated by fibroblast growth factor-2 (FGF-2), and both adhesion and proliferation are modulated by interactions with fibrinogen and fibrin. Previous evidence indicates that FGF-2 binds specifically and with high affinity to fibrinogen and fibrin, suggesting that their effects on endothelial cells may be coordinated. In this study, we have, therefore, investigated the ability of FGF-2 bound to fibrinogen and fibrin to stimulate proliferation of endothelial cells. Human umbilical vein endothelial cells were cultured in the presence of FGF-2 with or without fibrinogen, and proliferation was assessed by microscopic examination of cultures, incorporation of [3H]thymidine and by cell counting. Cells cultured in the presence of both FGF-2 and fibrinogen proliferated more rapidly than those with FGF-2 alone and exhibited a decreased population doubling time. At concentrations of FGF-2 up to 150 ng/ml, there was greater endothelial cell proliferation in the presence of fibrinogen than in its absence with the most pronounced effect below 1 ng/ml. The maximum effect of fibrinogen was observed at a molar ratio of fibrinogen to FGF-2 of 2:1, corresponding to the maximum molar binding ratio. Endothelial cells proliferated when plated on fibrin or surface-immobilized fibrinogen with FGF-2, indicating that FGF-2 bound to surface-associated fibrin(ogen) retained activity. We conclude that fibrinogen- or fibrin-bound FGF-2 is able to support endothelial cell proliferation and that fibrinogen potentiates the proliferative capacity of FGF-2.  相似文献   

11.
Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21–25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3’UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast differentiation. In summary, miR-141-3p acts as a negative regulator of hMSC proliferation and osteoblast differentiation. Targeting miR-141-3p could be used as an anabolic therapy of low bone mass diseases, e.g. osteoporosis.  相似文献   

12.
沉默DNA-PKcs对细胞信号转导相关基因转录的影响   总被引:2,自引:0,他引:2  
利用RNA干扰技术构建DNA-PKcs表达抑制细胞模型,探讨DNA-PKcs对HeLa细胞信号转导相关基因表达的调控作用.通过观察细胞对辐射及顺铂的敏感性,鉴定细胞表型变化.用寡核苷酸芯片检测细胞信号转导相关基因的转录谱,并用RT-PCR方法和SEAP检测系统进一步验证基因的表达变化.所筛选出的DNA-PKcs表达抑制细胞对辐射及顺铂的敏感性升高,15个与细胞信号转导相关的基因表达升高,其中7个是与干扰素信号转导反应相关的基因.8个表达下降,包括有细胞增殖分化相关基因,如NFAT.RT-PCR检测结果与芯片结果相一致,利用SEAT报告系统检测,进一步证实NFAT转录活性下调.实验结果表明,DNA-PKcs除了参与DNA修复外,还调控细胞信号转导相关基因的表达,而且大多与细胞增殖分化相关.  相似文献   

13.
Fibroblast growth factor (FGF) 5 inhibits hair growth and induces catagen in mouse hair follicles, in vivo. Given that FGF-5 receptor (FGFR1) is expressed in dermal papilla cells (DPCs), which are known to stimulate outer root sheath cell (ORSC) proliferation, we hypothesized that FGF-5 attenuates DPC-mediated ORSC proliferation. In the present study, DPCs and ORSCs were isolated from rat vibrissae, after which the effects of FGF-5 on proliferation of ORSCs cultured in DPC-conditioned medium were assessed. We first confirmed that FGFR1 was expressed in cultured DPCs and detected FGFR2-4 as well. ORSC proliferation was increased approximately twofold when the cells were cultured in DPC-conditioned medium, and the effect was unaltered by FGF-5. In addition, FGF-5 did not directly inhibit ORSC proliferation; indeed, it actually promoted proliferation of both DPCs and ORSCs. When DPCs were first activated by exposure to FGF-1 and FGF-2, which are expressed in hair follicles during anagen, ORSC proliferation observed in the resultant conditioned medium was substantially greater than in medium conditioned by unstimulated DPCs. The FGF-1-induced enhancement was reversed by FGF-5, diminishing ORSC proliferation to control levels. By contrast, the enhancement of DPC-mediated ORSC proliferation by FGF-2 was not suppressed by FGF-5. Proliferation of ORSCs did not depend on DPC proliferation, nor did FGF-1 directly promote ORSC proliferation. Dermal papillae thus appear to require activation before they will efficiently stimulate hair growth, and FGF-5 appears to inhibit hair growth and induce catagen by blocking that activation.  相似文献   

14.
In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation.  相似文献   

15.
dlk1/FA1 (delta-like 1/fetal antigen-1) is a member of the epidermal growth factor-like homeotic protein family whose expression is known to modulate the differentiation signals of mesenchymal and hematopoietic stem cells in bone marrow. We have demonstrated previously that Dlk1 can maintain the human bone marrow mesenchymal stem cells (hMSC) in an undifferentiated state. To identify the molecular mechanisms underlying these effects, we compared the basal gene expression pattern in Dlk1-overexpressing hMSC cells (hMSC-dlk1) versus control hMSC (negative for Dlk1 expression) by using Affymetrix HG-U133A microarrays. In response to Dlk1 expression, 128 genes were significantly up-regulated (with >2-fold; p < 0.001), and 24% of these genes were annotated as immune response-related factors, including pro-inflammatory cytokines, in addition to factors involved in the complement system, apoptosis, and cell adhesion. Also, addition of purified FA1 to hMSC up-regulated the same factors in a dose-dependent manner. As biological consequences of up-regulating these immune response-related factors, we showed that the inhibitory effects of dlk1 on osteoblast and adipocyte differentiation of hMSC are associated with Dlk1-induced cytokine expression. Furthermore, Dlk1 promoted B cell proliferation, synergized the immune response effects of the bacterial endotoxin lipopolysaccharide on hMSC, and led to marked transactivation of the NF-kappaB. Our data suggest a new role for Dlk1 in regulating the multiple biological functions of hMSC by influencing the composition of their microenvironment "niche." Our findings also demonstrate a role for Dlk1 in mediating the immune response.  相似文献   

16.
17.
Faslodex (FAS, ICI 182, 780), a novel steroidal estrogen antagonist decreased high-dose methotrexate (MTX) cytotoxicity in MCF-7 breast cancer cells. When FAS is given at least 24 hr prior to MTX, the resultant interaction is antagonistic. However, when breast cancer cells are exposed to FAS 24 hr after MTX, the interaction between FAS and MTX is not antagonistic. The proliferation of cells exposed to 0.1 microM FAS and 10 microM MTX alone or in combination with FAS 24 hr prior to MTX was in the following order: FAS>FAS 24 hr prior to MTX>MTX. MTX administration 24 hr prior to FAS had the following inhibitory effects on the growth of cells: MTX 24 hr prior to FAS >MTX>FAS 24 hr prior to MTX>FAS>control (no drug exposure). To determine if the antagonistic interaction between FAS and MTX was a function of sequence and time, cells were exposed to FAS 24 hr and 36 hr prior to MTX exposure. The percentages of control rates were 42.70 +/- 4.60% and 57.89 +/- 0.55%, respectively, from a 24 hr and 36 hr exposure of FAS prior to MTX. The growth rates after 24 and 36 hr exposures to MTX alone were 30.30 +/- 0.61% and 33.11 +/- 2.57% of control rates, respectively. These studies suggest that: a) the interactions between FAS and MTX are sequence-dependent; b) FAS antagonizes the effect of MTX when FAS administration precedes MTX, and c) FAS antagonism to MTX is a function of time.  相似文献   

18.
19.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

20.
A number of studies have reported that extremely low frequency magnetic fields (ELF-MF) can modulate proliferative processes in vitro; however, the transduction mechanisms implicated in such phenomena remain to be identified. The present study was aimed to determine whether a 50 Hz, 100 μT MF can induce cell proliferation in the human neuroblastoma line NB69, and whether the signaling pathway MAPK-ERK1/2 (Mitogen-Activated Protein Kinase - Extracellular-Signal-Regulated Kinase 1 and 2) is involved in that proliferative response. The cultures were exposed intermittently or continuously to the MF for a 63-hour duration. The continuous treatment did not induce significant changes in cell proliferation. In contrast, intermittent exposure caused statistically significant increase in the percent of cells in phase S of the cell cycle, followed by a significant increase in cell number. The intermittent treatment also induced an early, transient and repetitive activation of ERK1/2 that could be involved in the proliferative effects. In fact, both the proliferative response and the repeated activation of ERK1/2 were blocked by PD98059, the specific inhibitor of MEK (ERK kinases 1 and 2). Taken together, the described results indicate that a 50 Hz, 100 μT MF can stimulate proliferation in NB69 cells by triggering MAPK-ERK1/ 2 signaling at each of the "On" periods of an intermittent exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号