首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholera toxin (CT) travels as an intact AB(5) protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera.  相似文献   

2.
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.  相似文献   

3.
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic subunit of CT (CTA1) then crosses the ER membrane and enters the cytosol in a process that involves the quality control mechanism of ER-associated degradation. The molecular details of this dislocation event have not been fully characterized. Here, we report that thermal instability in the CTA1 subunit—specifically, the loss of CTA1 tertiary structure at 37 °C—triggers toxin dislocation. Biophysical studies found that glycerol preferentially stabilized the tertiary structure of CTA1 without having any noticeable effect on the thermal stability of its secondary structure. The thermal disordering of CTA1 tertiary structure normally preceded the perturbation of its secondary structure, but in the presence of 10% glycerol the temperature-induced loss of CTA1 tertiary structure occurred at higher temperatures in tandem with the loss of CTA1 secondary structure. The glycerol-induced stabilization of CTA1 tertiary structure blocked CTA1 dislocation from the ER and instead promoted CTA1 secretion into the extracellular medium. This, in turn, inhibited CT intoxication. Glycerol treatment also inhibited the in vitro degradation of CTA1 by the core 20S proteasome. Collectively, these findings indicate that toxin thermal instability plays a key role in the intoxication process. They also suggest the stabilization of CTA1 tertiary structure is a potential goal for novel antitoxin therapeutic agents.  相似文献   

4.
Ricin is a potent plant cytotoxin composed of an A-chain [RTA (ricin A-chain)] connected by a disulfide bond to a cell binding lectin B-chain [RTB (ricin B-chain)]. After endocytic uptake, the toxin is transported retrogradely to the ER (endoplasmic reticulum) from where enzymatically active RTA is translocated to the cytosol. This transport is promoted by the EDEM1 (ER degradation-enhancing α-mannosidase I-like protein 1), which is also responsible for directing aberrant proteins for ERAD (ER-associated protein degradation). RTA contains a 12-residue hydrophobic C-terminal region that becomes exposed after reduction of ricin in the ER. This region, especially Pro250, plays a crucial role in ricin cytotoxicity. In the present study, we introduced a point mutation [P250A (substitution of Pro250 with alanine)] in the hydrophobic region of RTA to study the intracellular transport of the modified toxin. The introduced mutation alters the secondary structure of RTA into a more helical structure. Mutation P250A increases endosomal-lysosomal degradation of the toxin, as well as reducing its transport from the ER to the cytosol. Transport of modified RTA to the cytosol, in contrast to wild-type RTA, appears to be EDEM1-independent. Importantly, the interaction between EDEM1 and RTA(P250A) is reduced. This is the first reported evidence that EDEM1 protein recognition might be determined by the structure of the ERAD substrate.  相似文献   

5.
6.
Day PJ  Pinheiro TJ  Roberts LM  Lord JM 《Biochemistry》2002,41(8):2836-2843
Ricin is a heterodimeric protein toxin in which a catalytic polypeptide (the A-chain or RTA) is linked by a disulfide bond to a cell-binding polypeptide (the B-chain or RTB). During cell entry, ricin undergoes retrograde vesicular transport to reach the endoplasmic reticulum (ER) lumen, from where RTA translocates into the cytosol, probably by masquerading as a substrate for the ER-associated protein degradation (ERAD) pathway. In partitioning studies in Triton X-114 solution, RTA is predominantly found in the detergent phase, whereas ricin holotoxin, native RTB, and several single-chain ribosome-inactivating proteins (RIPs) are in the aqueous phase. Fluorescence spectroscopy and far-UV circular dichroism (CD) demonstrated significant structural changes in RTA as a result of its interaction with liposomes containing negatively charged phospholipid (POPG). These lipid-induced structural changes markedly increased the trypsin sensitivity of RTA and, on the basis of the protein fluorescence determinations, abolished its ability to bind to adenine, the product resulting from RTA-catalyzed depurination of 28S ribosomal RNA. RTA also released trapped calcein from POPG vesicles, indicating that it destabilized the lipid bilayer. We speculate that membrane-induced partial unfolding of RTA during cell entry may facilitate its recognition as an ERAD substrate.  相似文献   

7.
Cholera toxin (CT) travels from the cell surface to the endoplasmic reticulum (ER) as an AB holotoxin. ER-specific conditions then promote the dissociation of the catalytic CTA1 subunit from the rest of the toxin. CTA1 is held in a stable conformation by its assembly in the CT holotoxin, but the dissociated CTA1 subunit is an unstable protein that spontaneously assumes a disordered state at physiological temperature. This unfolding event triggers the ER-to-cytosol translocation of CTA1 through the quality control mechanism of ER-associated degradation. The translocated pool of CTA1 must regain a folded, active structure to modify its G protein target which is located in lipid rafts at the cytoplasmic face of the plasma membrane. Here, we report that lipid rafts place disordered CTA1 in a functional conformation. The hydrophobic C-terminal domain of CTA1 is essential for binding to the plasma membrane and lipid rafts. These interactions inhibit the temperature-induced unfolding of CTA1. Moreover, lipid rafts could promote a gain of structure in the disordered, 37 °C conformation of CTA1. This gain of structure corresponded to a gain of function: whereas CTA1 by itself exhibited minimal in vitro activity at 37 °C, exposure to lipid rafts resulted in substantial toxin activity at 37 °C. In vivo, the disruption of lipid rafts with filipin substantially reduced the activity of cytosolic CTA1. Lipid rafts thus exhibit a chaperone-like function that returns disordered CTA1 to an active state and is required for the optimal in vivo activity of CTA1.  相似文献   

8.
Ricin toxin kills mammalian cells with notorious efficiency. The toxin’s B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin’s A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin’s individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA’s F-G loop (mode 1), RTB’s subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin’s cytotoxic pathway.  相似文献   

9.
Deeks ED  Cook JP  Day PJ  Smith DC  Roberts LM  Lord JM 《Biochemistry》2002,41(10):3405-3413
Several protein toxins, including the A chain of ricin (RTA), enter mammalian cells by endocytosis and subsequently reach their cytosolic substrates by translocation across the endoplasmic reticulum (ER) membrane. To achieve this export, such toxins exploit the ER-associated protein degradation (ERAD) pathway but must escape, at least in part, the normal degradative fate of ERAD substrates. Toxins that translocate from the ER have an unusually low lysine content. Since lysyl residues are potential ubiquitination sites, it has been proposed that this paucity of lysines reduces the chance of ubiquitination and subsequent ubiquitin-mediated proteasomal degradation [Hazes, B., and Read, R. J. (1997) Biochemistry 36, 11051-11054]. Here we provide experimental support for this hypothesis. The two lysyl residues within RTA were changed to arginyl residues. Their replacement in RTA did not have a significant stabilizing effect, suggesting that the endogenous lysyl residues are not the usual sites for ubiquitin attachment. However, when four additional lysines were introduced into RTA in a way that did not compromise the activity, structure, or stability of the toxin, degradation was significantly enhanced. Enhanced degradation resulted from ubiquitination that predisposed the toxin to proteasomal degradation. Treatment with the proteasome inhibitor clasto-lactacystin beta-lactone increased the cytotoxicity of the lysine-rich RTA to a level approaching that of wild-type ricin. The introduction of four additional lysyl residues into a second ribosome-inactivating protein, abrin A chain, also dramatically decreased the cytotoxicity of the holotoxin compared to wild-type abrin. This effect could also be reversed by proteasomal inhibition. Our data support the hypothesis that the evolution of a low lysine content is a degradation-avoidance strategy for toxins that retrotranslocate from the ER.  相似文献   

10.
Ricin enters the cells by receptor-mediated endocytosis, followed by translocation across the membranes of intracellular organelles. A trans-Golgi retention peptide signal YQRL was fused to the C-terminus of ricin A chain (RTA) by polymerase chain reaction. The recombinant RTA and RTA-YQRL were expressed in Escherichia coli using plasmid pKK223.3 under the control of a tac promoter. The recombinant proteins were purified by affinity chromatography on a Blue-Sepharose 6B column. The cytotoxicities of RTA and the fusion toxin RTA-YQRL were measured by the MTT assay in HeLa, SKOV-3, and WISH cells following fluid-phase endocytosis. The rRTA-YQRL was 2-, 10-, and 40-fold more cytotoxic than rRTA itself in the three cell lines, respectively. The results indicate that addition of a TGN retention signal YQRL to the C-terminus of RTA can markedly increase its cytotoxicity, suggesting TGN may play an important role in the intracellular routing and translocation of RTA.  相似文献   

11.
A DNA sequence encoding the A chain of ricin toxin (RTA) from the castor bean plant, Ricinus communis, was placed under GAL1 promoter control and transformed into Saccharomyces cerevisiae. Induction of expression of RTA was lethal. This lethality was the basis for a selection of mutations in RTA which inactivated the toxin. A number of mutant alleles which encoded cross-reactive material were sequenced. Eight of the first nine mutant RTAs studied showed single-amino-acid changes involving residues located in the proposed active-site cleft.  相似文献   

12.
Protein-disulfide isomerase (PDI) has been proposed to exhibit an "unfoldase" activity against the catalytic A1 subunit of cholera toxin (CT). Unfolding of the CTA1 subunit is thought to displace it from the CT holotoxin and to prepare it for translocation to the cytosol. To date, the unfoldase activity of PDI has not been demonstrated for any substrate other than CTA1. An alternative explanation for the putative unfoldase activity of PDI has been suggested by recent structural studies demonstrating that CTA1 will unfold spontaneously upon its separation from the holotoxin at physiological temperature. Thus, PDI may simply dislodge CTA1 from the CT holotoxin without unfolding the CTA1 subunit. To evaluate the role of PDI in CT disassembly and CTA1 unfolding, we utilized a real-time assay to monitor the PDI-mediated separation of CTA1 from the CT holotoxin and directly examined the impact of PDI binding on CTA1 structure by isotope-edited Fourier transform infrared spectroscopy. Our collective data demonstrate that PDI is required for disassembly of the CT holotoxin but does not unfold the CTA1 subunit, thus uncovering a new mechanism for CTA1 dissociation from its holotoxin.  相似文献   

13.
To generate a cytopathic effect, the catalytic A1 subunit of cholera toxin (CT) must be separated from the rest of the toxin. Protein disulfide isomerase (PDI) is thought to mediate CT disassembly by acting as a redox-driven chaperone that actively unfolds the CTA1 subunit. Here, we show that PDI itself unfolds upon contact with CTA1. The substrate-induced unfolding of PDI provides a novel molecular mechanism for holotoxin disassembly: we postulate the expanded hydrodynamic radius of unfolded PDI acts as a wedge to dislodge reduced CTA1 from its holotoxin. The oxidoreductase activity of PDI was not required for CT disassembly, but CTA1 displacement did not occur when PDI was locked in a folded conformation or when its substrate-induced unfolding was blocked due to the loss of chaperone function. Two other oxidoreductases (ERp57 and ERp72) did not unfold in the presence of CTA1 and did not displace reduced CTA1 from its holotoxin. Our data establish a new functional property of PDI that may be linked to its role as a chaperone that prevents protein aggregation.  相似文献   

14.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   

15.
Derlin-1 facilitates the retro-translocation of cholera toxin   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholera toxin (CT) intoxicates cells by using its receptor-binding B subunit (CTB) to traffic from the plasma membrane to the endoplasmic reticulum (ER). In this compartment, the catalytic A1 subunit (CTA1) is unfolded by protein disulfide isomerase (PDI) and retro-translocated to the cytosol where it triggers a signaling cascade, leading to secretory diarrhea. How CT is targeted to the site of retro-translocation in the ER membrane to initiate translocation is unclear. Using a semipermeabilized-cell retro-translocation assay, we demonstrate that a dominant-negative Derlin-1-YFP fusion protein attenuates the ER-to-cytosol transport of CTA1. Derlin-1 interacts with CTB and the ER chaperone PDI as assessed by coimmunoprecipitation experiments. An in vitro membrane-binding assay showed that CTB stimulated the unfolded CTA1 chain to bind to the ER membrane. Moreover, intoxication of intact cells with CTB stabilized the degradation of a Derlin-1-dependent substrate, suggesting that CT uses the Derlin-1 pathway. These findings indicate that Derlin-1 facilitates the retro-translocation of CT. CTB may play a role in this process by targeting the holotoxin to Derlin-1, enabling the Derlin-1-bound PDI to unfold the A1 subunit and prepare it for transport.  相似文献   

16.
Cholera toxin (CT) is an AB-type protein toxin that contains a catalytic A1 subunit, an A2 linker, and a cell-binding B homopentamer. The CT holotoxin is released into the extracellular environment, but CTA1 attacks a target within the cytosol of a host cell. We recently reported that grape extract confers substantial resistance to CT. Here, we used a cell culture system to identify twelve individual phenolic compounds from grape extract that inhibit CT. Additional studies determined the mechanism of inhibition for a subset of the compounds: two inhibited CT binding to the cell surface and even stripped CT from the plasma membrane of a target cell; two inhibited the enzymatic activity of CTA1; and four blocked cytosolic toxin activity without directly affecting the enzymatic function of CTA1. Individual polyphenolic compounds from grape extract could also generate cellular resistance to diphtheria toxin, exotoxin A, and ricin. We have thus identified individual toxin inhibitors from grape extract and some of their mechanisms of inhibition against CT.  相似文献   

17.
Cholera toxin (CT) contains one A chain and five B chains. The A chain is an enzyme that covalently modifies a trimeric G protein in the cytoplasm, resulting in the overproduction of cAMP. The B chain binds the glycosphingolipid G(M1), the cell surface receptor for CT, which initiates receptor-mediated endocytosis of the toxin. After endocytosis, CT enters the endoplasmic reticulum (ER) via retrograde vesicular traffic where the A chain retro-translocates through the ER membrane to reach the cytoplasm. The retro-translocation mechanism is poorly understood, but may involve proteins of the ER stress response, including the ER associated degradation (ERAD) pathway. We report here that treating cells with CT or CTB quickly up-regulates the levels of BiP, Derlin-1, and Derlin-2, known participants in the ER stress response and ERAD. CT did not induce calnexin, another known responder to ER stress, indicating that the CT-mediated induction of ER proteins is selective in this time frame. These data suggest that CT may promote retro-translocation of the A chain to the cytoplasm by rapidly up-regulating a set of ER proteins involved in the retro-translocation process. In support of this idea, a variety of conditions that induced BiP, Derlin-1, and Derlin-2 sensitized cells to CT and conditions that inhibited their induction de-sensitized cells to CT. Moreover, specifically suppressing Derlin-1 with siRNA protected cells from CT. In addition, Derlin-1 co-immunoprecipitated with CTA or CTB from CT-treated cells using anti-CTA or anti-CTB antibodies. Altogether, the results are consistent with the hypothesis that the B chain of CT up-regulates ER proteins that may assist in the retro-translocation of the A chain across the ER membrane.  相似文献   

18.
 A pKK expression system in Escherichia coli was used to produce recombinant ricin A chain (rRTA) and rRTA modified by addition of organelle-specific amino acid retention sequences, including KDEL (an endoplasmic reticulum, ER, lumen retention signal), KKMP (an ER membrane retention signal), YQRL (a trans-Golgi network retention signal) and KFERQ (a lysosome-targeting signal) to the C terminus of rRTA. The toxicities of these RTA mutants were assessed in Jurkat cells following fluid-phase endocytosis. rRTA-KDEL and rRTA-YQRL were significantly more cytotoxic for Jurkat cells than rRTA, rRTA-KKMP or rRTA-KFERQ. This difference did not result from signal(KDEL or YQRL)-mediated binding of these RTA mutants to the cell surface. Reconstituted ER and Golgi vesicles have been employed to assess translocation of rRTA and mutant rRTA. RTA-KDEL and RTA-YQRL respectively exhibited 6.7-fold and 6.1-fold more protection against papain digestion in reconstituted ER vesicles and 2.2-fold and 1.8-fold more protection in reconstituted Golgi vesicles, than unmodified rRTA. These mutants were reassociated with ricin B chain to form holotoxins. The mutant RTA-KDEL and RTA-YQRL holotoxins were 3.8-fold and 1.5-fold more cytotoxic for target cells, respectively, than ricin produced using unmodified rRTA. Our results suggest that both ER and the trans-Golgi network may play important roles in the intracellular trafficking and translocation of ricin A chain. Received: 14 August 1997 / Accepted: 14 October 1997  相似文献   

19.
RTA1-33/44-198 is a catalytically inactive, single-domain derivative of the ricin toxin A-chain (RTA) engineered to serve as a stable protein scaffold for presentation of native immunogenic epitopes (Olson et al., Protein Eng Des Sel 2004;17:391-397). To improve the stability and solubility of RTA1-33/44-198 further, we have undertaken the design challenge of introducing a disulfide (SS) bond. Nine pairs of residues were selected for placement of the SS-bond based on molecular dynamics simulation studies of the modeled single-domain chain. Disulfide formation at either of two positions (R48C/T77C or V49C/E99C) involving a specific surface loop (44-55) increased the protein melting temperature by ~5°C compared with RTA1-33/44-198 and by ~13°C compared with RTA. Prolonged stability studies of the R48C/T77C variant (> 60 days at 37°C, pH 7.4) confirmed a > 40% reduction in self-aggregation compared with RTA1-33/44-198 lacking the SS-bond. The R48C/T77C variant retained affinity for anti-RTA antibodies capable of neutralizing ricin toxin, including a monoclonal that recognizes a human B-cell epitope. Introduction of either R48C/T77C or V49C/E99C promoted crystallization of RTA1-33/44-198, and the X-ray structures of the variants were solved to 2.3 A or 2.1 A resolution, respectively. The structures confirm formation of an intramolecular SS-bond, and reveal a single-domain fold that is significantly reduced in volume compared with RTA. Loop 44 to 55 is partly disordered as predicted by simulations, and is positioned to form self-self interactions between symmetry-related molecules. We discuss the importance of RTA loop 34 to 55 as a nucleus for unfolding and aggregation, and draw conclusions for ongoing structure-based minimalist design of RTA-based immunogens.  相似文献   

20.
Cholera toxin (CT) traffics from the host cell surface to the endoplasmic reticulum (ER), where the toxin''s catalytic CTA1 subunit retrotranslocates to the cytosol to induce toxicity. In the ER, CT is captured by the E3 ubiquitin ligase Hrd1 via an undefined mechanism to prepare for retrotranslocation. Using loss-of-function and gain-of-function approaches, we demonstrate that the ER-resident factor ERdj5 promotes CTA1 retrotranslocation, in part, via its J domain. This Hsp70 cochaperone regulates binding between CTA and the ER Hsp70 BiP, a chaperone previously implicated in toxin retrotranslocation. Importantly, ERdj5 interacts with the Hrd1 adaptor Sel1L directly through Sel1L''s N-terminal lumenal domain, thereby linking ERdj5 to the Hrd1 complex. Sel1L itself also binds CTA and facilitates toxin retrotranslocation. By contrast, EDEM1 and OS-9, two established Sel1L binding partners, do not play significant roles in CTA1 retrotranslocation. Our results thus identify two ER factors that promote ER-to-cytosol transport of CTA1. They also indicate that ERdj5, by binding to Sel1L, triggers BiP–toxin interaction proximal to the Hrd1 complex. We postulate this scenario enables the Hrd1-associated retrotranslocation machinery to capture the toxin efficiently once the toxin is released from BiP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号