首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA is synthesized from glutamate by glutamate decarboxylase (GAD), which exists in two isoforms, that is, GAD65 and GAD67. In line with GAD65 being located in the GABAergic synapse, several studies have demonstrated that this isoform is important during sustained synaptic transmission. In contrast, the functional significance of GAD65 in the maintenance of GABA destined for extrasynaptic tonic inhibition is less well studied. Using GAD65-/- and wild type GAD65+/+ mice, this was examined employing the cortical wedge preparation, a model suitable for investigating extrasynaptic GABA(A) receptor activity. An impaired tonic inhibition in GAD65-/- mice was revealed demonstrating a significant role of GAD65 in the synthesis of GABA acting extrasynaptically. The correlation between an altered tonic inhibition and metabolic events as well as the functional and metabolic role of GABA synthesized by GAD65 was further investigated in vivo. Tonic inhibition and the demand for biosynthesis of GABA were augmented by injection of kainate into GAD65-/- and GAD65+/+ mice. Moreover, [1-(13) C]glucose and [1,2-(13) C]acetate were administered to study neuronal and astrocytic metabolism concomitantly. Subsequently, cortical and hippocampal extracts were analyzed by NMR spectroscopy and mass spectrometry, respectively. Although seizure activity was induced by kainate, neuronal hypometabolism was observed in GAD65+/+ mice. In contrast, kainate evoked hypermetabolism in GAD65-/- mice exhibiting deficiencies in tonic inhibition. These findings underline the importance of GAD65 for synthesis of GABA destined for extrasynaptic tonic inhibition, regulating epileptiform activity.  相似文献   

2.
Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms, are responsible for the dysfunction of GABAergic interneurons in the hippocampal CA3 subfield of CD-/- mice.  相似文献   

3.
Idiopathic generalized epilepsy represents about 30–35% of all epilepsies in humans. The bromodomain BRD2 gene has been repeatedly associated with the subsyndrome of juvenile myoclonic epilepsy (JME). Our previous work determined that mice haploinsufficient in Brd2 (Brd2+/?) have increased susceptibility to provoked seizures, develop spontaneous seizures and have significantly decreased gamma‐aminobutyric acid (GABA) markers in the direct basal ganglia pathway as well as in the neocortex and superior colliculus. Here, we tested male and female Brd2+/? and wild‐type littermate mice in a battery of behavioral tests (open field, tube dominance test, elevated plus maze, Morris water maze and Barnes maze) to identify whether Brd2 haploinsufficiency is associated with the human behavioral patterns, the so‐called JME personality. Brd2+/? females but not males consistently displayed decreased anxiety. Furthermore, we found a highly significant dominance trait (aggression) in the Brd2+/? mice compared with the wild type, more pronounced in females. Brd2+/? mice of either sex did not differ from wild‐type mice in spatial learning and memory tests. Compared with wild‐type littermates, we found decreased numbers of GABA neurons in the basolateral amygdala, which is consistent with the increase in aggressive behavior. Our results indicate that Brd2+/? haploinsufficient mice show no cognitive impairment but have behavioral traits similar to those found in patients with JME (recklessness, aggression). This suggests that either the BRD2 gene is directly responsible for influencing many traits of JME or it controls upstream regulators of individual phenotypes.  相似文献   

4.
5.
In this study we tested the hypothesis that the 65-kDa isoform of glutamate decarboxylase (GAD(65)) mediates activity-dependent GABA synthesis as invoked by seizures in anesthetized rats. GABA synthesis was measured following acute GABA-transaminase inhibition by gabaculine using spatially localized (1)H NMR spectroscopy before and after bicuculline-induced seizures. Experiments were conducted with animals pre-treated with vigabatrin 24 h earlier in order to reduce GAD(67) protein and also with non-treated controls. GAD isoform content was quantified by immunoblotting. GABA was higher in vigabatrin-treated rats compared to non-treated controls. In vigabatrin-treated animals, GABA synthesis was 28% lower compared to controls [p < 0.05; vigabatrin-treated, 0.043 +/- 0.011 micromol/(g min); non-treated, 0.060 +/- 0.014 micromol/(g min)] and GAD(67) was 60% lower. No difference between groups was observed for GAD(65). Seizures increased GABA synthesis in both control [174%; control, 0.060 +/- 0.014 micromol/(g min) vs. seizures, 0.105 +/- 0.043 micromol/(g min)] and vigabatrin-treated rats [214%; control, 0.043 +/- 0.011 micromol/(g min); seizures, 0.092 +/- 0.018 micromol/(g min)]. GAD(67) could account for at least half of basal GABA synthesis but only 20% of the two-fold increase observed in vigabatrin-treated rats during seizures. The seizure-induced activation of GAD(65) in control cortex occurs concomitantly with a 2.3-fold increase in inorganic phosphate, known to be a potent activator of apoGAD(65)in vitro. Our results are consistent with a major role for GAD(65) in activity-dependent GABA synthesis.  相似文献   

6.
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.  相似文献   

7.
Culturing mouse cerebellar neurones (predominantly glutamatergic) in the presence of [1-(13)C]glucose for 7 days resulted in a surprisingly extensive labelling of the inhibitory neurotransmitter GABA, the average content and labelling of which were 20 +/- 4 nmol/mg protein and 20 +/- 4%, respectively. Cultures of neocortical neurones (predominantly GABAergic) had under similar conditions a GABA content and labelling of 32 +/- 2 nmol/mg protein and 21 +/- 2%. The cerebellar cultures contained only 6% glutamate decarboxylase (GAD)-positive neurones when immunolabelled using a GAD67 antibody, while a dense network of neurones in the neocortical cultures stained positively for GAD67. Exposure of the cerebellar cultures to 50 microm kainic acid (KA) which is known to eliminate vesicular release of GABA, only marginally affected GABA labelling and cellular content. Likewise this treatment had no effect on the number of GAD67-positive neurones but a massive punctate immunostaining observed in control cultures was essentially eliminated. Increasing the KA concentration to 0.5 mm in the culture medium for 7 days led to a reduction of GABA labelling and content compared to cerebellar cultures not exposed to KA. Although it is likely that this large capacity for GABA synthesis resides in the relatively few GAD-positive neurones, it seems unlikely that they could account for the large average GABA content in the cultures. Therefore it must be concluded that the newly synthesized GABA is redistributed among the majority of the cells in these cultures, i.e. the glutamatergic neurones.  相似文献   

8.
The GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) is expressed in pancreatic beta-cells and GABA has been suggested to play a role in islet cell development and function. Mouse beta-cells predominantly express the larger isoform of the enzyme, GAD67, and very low levels of the second isoform, GAD65. Yet GAD65 has been shown to be a target of very early autoimmune T-cell responses associated with beta-cell destruction in the non-obese diabetic (NOD) mouse model of Type 1 diabetes. Mice deficient in GAD67, GAD65 or both were used to assess whether GABA is important for islet cell development, and whether GAD65 is required for initiation of insulitis and progression to Type 1 diabetes in the mouse. Lack of either GAD65 or GAD67 did not effect the development of islet cells and the general morphology of islets. When GAD65-/-(129/Sv) mice were backcrossed into the NOD strain for four generations, GAD65-deficient mice developed insulitis similar to GAD65+/+ mice. Furthermore, at the low penetrance of diabetes in this backcross, GAD65-deficient mice developed disease at the same rate and incidence as wildtype mice. The results suggest that GABA generated by either GAD65 or GAD67 is not critically involved in islet formation and that GAD65 expression is not an absolute requirement for development of autoimmune diabetes in the NOD mouse.  相似文献   

9.
The role of the GABA(A) receptor beta3 subunit in determining acute cocaine sensitivity and behavioral sensitization to repeated cocaine was measured in mice missing both (-/-), one (+/-), or neither (+/+) allele of the beta3 gene. Locomotor stimulation induced by one cocaine injection (20 mg/kg, i.p.) was found to be greater in -/- mice compared with +/+ mice, whereas cocaine-induced behaviors were intermediate in +/- mice. Amphetamine did not cause greater locomotor responses in -/- mice, suggesting that the increased sensitivity of -/- mice to cocaine does not generalize to other psychomotor stimulants. GABA-stimulated chloride uptake was 51% lower in striatum of -/- mice compared with +/+ mice, but only 27% lower in cortex. After 14 daily cocaine injections, the behavioral response to cocaine was increased in +/+ and +/- mice, but was not increased further in -/- mice. Additionally, repeated cocaine exposure decreased striatal GABA(A) receptor function in +/+ and +/- mice. In -/- mice, GABA(A) receptor function was not decreased any further by repeated cocaine injections. Thus, alterations in the beta3 subunit may be responsible for determining the behavioral responses induced by acute and repeated cocaine treatment, as well as mediating the neurochemical adaptation that occurs during sensitization to repeated cocaine.  相似文献   

10.
11.
The γ‐amino butyric acid (GABA) synthetic enzyme glutamic acid decarboxylase (GAD)65 is critically involved in the activity‐dependent regulation of GABAergic inhibition in the central nervous system. It is also required for the maturation of the GABAergic system during adolescence, a phase that is critical for the development of several neuropsychiatric diseases. Mice bearing a null mutation of the GAD65 gene develop hyperexcitability of the amygdala and hippocampus, and a phenotype of increased anxiety and pathological fear memory reminiscent of posttraumatic stress disorder. Although genetic association of GAD65 in human has not yet been reported, these findings are in line with observations of reduced GABAergic function in these brain regions of anxiety disorder patients. The particular value of GAD65(?/?) mice thus lies in modeling the effects of reduced GABAergic function in the mature nervous system. The expression of GAD65 and a second GAD isozyme, GAD67, are differentially regulated in response to stress in limbic brain areas suggesting that by controlling GABAergic inhibition these enzymes determine the vulnerability for the development of pathological anxiety and other stress‐induced phenotypes. In fact, we could recently show that GAD65 haplodeficiency, which results in delayed postnatal increase of GABA levels, provides resilience to juvenile‐stress‐induced anxiety to GAD65(+/?) mice thus foiling the increased fear and anxiety in homozygous GAD65(?/?) mice.  相似文献   

12.
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates, but has also been reported in multiple cell types outside the CNS. A GABAergic system has been proposed in neuroepithelial bodies (NEBs) in monkey lungs. Pulmonary NEBs are known as complex intraepithelial sensory airway receptors and are part of the NEB microenvironment. Aim of the present study was to unravel a GABAergic signaling system in the NEB microenvironment in mouse lungs, enabling the use of genetically modified animals for future functional studies. Immunostaining of mouse lungs revealed that glutamic acid decarboxylase 65/67 (GAD65/67), a rate-limiting enzyme in the biosynthesis of GABA, and the vesicular GABA transporter (VGAT) were exclusively expressed in NEB cells. In GAD67-green fluorescent protein (GFP) knock-in mice, all pulmonary NEBs appeared to express GFP. For confocal live cell imaging, ex vivo vibratome lung slices of GAD67-GFP mice can be directly loaded with fluorescent functional probes, e.g. a red-fluorescent calcium dye, without the necessity of time-consuming prior live visualization of NEBs. RT-PCR of the NEB microenvironment obtained by laser microdissection revealed the presence of both GABAA and GABAB (R1 and R2) receptors, which was confirmed by immunostaining. In conclusion, the present study not only revealed the presence of a GABAergic signaling pathway, but also the very selective expression of GFP in pulmonary NEBs in a GAD67-GFP mouse model. Different proof of concept experiments have clearly shown that adoption of the GAD67-GFP mouse model will certainly boost future functional imaging and gene expression analysis of the mouse NEB microenvironment.  相似文献   

13.

Background

Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. Chronic supplementation of taurine in drinking water to mice increases brain excitability mainly through alterations in the inhibitory GABAergic system. These changes include elevated expression level of glutamic acid decarboxylase (GAD) and increased levels of GABA. Additionally we reported that GABAA receptors were down regulated with chronic administration of taurine. Here, we investigated pharmacologically the functional significance of decreased / or change in subunit composition of the GABAA receptors by determining the threshold for picrotoxin-induced seizures. Picrotoxin, an antagonist of GABAA receptors that blocks the channels while in the open state, binds within the pore of the channel between the β2 and β3 subunits. These are the same subunits to which GABA and presumably taurine binds.

Methods

Two-month-old male FVB/NJ mice were subcutaneously injected with picrotoxin (5 mg kg-1) and observed for a) latency until seizures began, b) duration of seizures, and c) frequency of seizures. For taurine treatment, mice were either fed taurine in drinking water (0.05%) or injected (43 mg/kg) 15 min prior to picrotoxin injection.

Results

We found that taurine-fed mice are resistant to picrotoxin-induced seizures when compared to age-matched controls, as measured by increased latency to seizure, decreased occurrence of seizures and reduced mortality rate. In the picrotoxin-treated animals, latency and duration were significantly shorter than in taurine-treated animas. Injection of taurine 15 min before picrotoxin significantly delayed seizure onset, as did chronic administration of taurine in the diet. Further, taurine treatment significantly increased survival rates compared to the picrotoxin-treated mice.

Conclusions

We suggest that the elevated threshold for picrotoxin-induced seizures in taurine-fed mice is due to the reduced binding sites available for picrotoxin binding due to the reduced expression of the beta subunits of the GABAA receptor. The delayed effects of picrotoxin after acute taurine injection may indicate that the two molecules are competing for the same binding site on the GABAA receptor. Thus, taurine-fed mice have a functional alteration in the GABAergic system. These include: increased GAD expression, increased GABA levels, and changes in subunit composition of the GABAA receptors. Such a finding is relevant in conditions where agonists of GABAA receptors, such as anesthetics, are administered.
  相似文献   

14.
Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT)-Venus transgenic mice from birth (P0) through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr), the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABAA receptors and of the Na+-K+-Cl cotransporters, and chelating intracellular Ca2+, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABAAR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.  相似文献   

15.
The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.  相似文献   

16.
Fibroblast growth factor 9 (FGF9) has long been assumed to modulate multiple biological processes, yet very little is known about the impact of FGF9 on neurodevelopment. Herein, we found that loss of Fgf9 in olig1 progenitor cells induced epilepsy in mice, with pathological changes in the cortex. Then depleting Fgf9 in different neural populations revealed that epilepsy was associated with GABAergic neurons. Fgf9 CKO in GABAergic neuron (CKOVGAT) mice exhibited not only the most severe seizures, but also the most severe growth retardation and highest mortality. Fgf9 deletion in CKOVGAT mice caused neuronal apoptosis and decreased GABA expression, leading to a GABA/Glu imbalance and epilepsy. The adenylate cyclase/cyclic AMP and ERK signaling pathways were activated in this process. Recombinant FGF9 proteoliposomes could significantly decrease the number of seizures. Furthermore, the decrease of FGF9 was commonly observed in serum of epileptic patients, especially those with focal seizures. Thus, FGF9 plays essential roles in GABAergic neuron survival and epilepsy pathology, which could serve as a new target for the treatment of epilepsy.Subject terms: Epilepsy, Molecular neuroscience  相似文献   

17.
Networks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice. Cultures developed spontaneous synchronous activity already at 5-7 days in vitro (DIV), as revealed by imaging transient changes in Fluo-3 fluorescence. Concurrently, spontaneous glutamate-mediated and GABA(A)-mediated postsynaptic currents (sPSCs) occured at 5 DIV. For both types of neurons the frequency of glutamatergic and GABAergic sPSCs increased with DIV, whereas the charge transfer of glutamatergic sPSCs increased and the charge transfer of GABAergic sPSCs decreased with cultivation time. The ratio between GABAergic and the overall charge transfer was significantly reduced with DIV for L-INs and PNs, indicating an overall reduction in GABAergic synaptic drive with maturation of the network. In contrast, analysis of miniature PSCs (mPSCs) revealed no significant changes of charge transfer with DIV for both types of neurons, indicating that the reduction in GABAergic drive was not due to a decreased number of functional synapses. Our data suggest that the global reduction in GABAergic synaptic drive together with more synaptic input to PNs and L-INs during maturation may enhance rhythmogenesis of the network and increase the synchronization at the level of population bursts.  相似文献   

18.
Idiopathic generalized epilepsy (IGE) is a class of genetically determined, phenotypically related epilepsy syndromes. Linkage analysis identified a chromosome 18 locus predisposing to a number of adolescent-onset IGEs. We report a single-nucleotide polymorphism (SNP) association analysis of the region around the marker locus with the high LOD score. This analysis, which used both case-control and family-based association methods, yielded strong evidence that malic enzyme 2 (ME2) is the gene predisposing to IGE. We also observed association among subgroups of IGE syndromes. An ME2-centered nine-SNP haplotype, when present homozygously, increases the risk for IGE (odds ratio 6.1; 95% confidence interval 2.9-12.7) compared with any other genotype. Both the linkage analysis and the association analysis support recessive inheritance for the locus, which is compatible with the fact that ME2 is an enzyme. ME2 is a genome-coded mitochondrial enzyme that converts malate to pyruvate and is involved in neuronal synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). The results suggest that GABA synthesis disruption predisposes to common IGE and that clinical seizures are triggered when mutations at other genes, or perhaps other insults, are present.  相似文献   

19.
Functional neural circuit formation during development involves massive elimination of redundant synapses. In the cerebellum, one-to-one connection from excitatory climbing fiber (CF) to Purkinje cell (PC) is established by elimination of early-formed surplus CFs. This process depends on glutamatergic excitatory inputs, but contribution of GABAergic transmission remains unclear. Here, we demonstrate impaired CF synapse elimination in mouse models with diminished GABAergic transmission by mutation of a single allele for the GABA synthesizing enzyme GAD67, by conditional deletion of GAD67 from PCs and GABAergic interneurons or by pharmacological inhibition of cerebellar GAD activity. The impaired CF synapse elimination was rescued by enhancing GABA(A) receptor sensitivity in the cerebellum by locally applied diazepam. Our electrophysiological and Ca2+ imaging data suggest that GABA(A) receptor-mediated inhibition onto the PC soma from molecular layer interneurons influences CF-induced Ca2+ transients in the soma and regulates CF synapse elimination from postnatal day 10 (P10) to around P16.  相似文献   

20.
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号