共查询到20条相似文献,搜索用时 15 毫秒
1.
Yumiko Masuda Masashi Tsuda Chie Hashikawa-Muto Yusuke Takahashi Koichi Nonaka Kaori Wakamatsu 《Biotechnology progress》2019,35(5):e2858
Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal. 相似文献
2.
Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode
下载免费PDF全文

Timothy Iskra Ashley Sacramo Chris Gallo Ranga Godavarti Shuang Chen Scott Lute Kurt Brorson 《Biotechnology progress》2015,31(3):750-757
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015 相似文献
3.
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of \"bracketed generic\" validation can be applied to this and potentially other chromatography unit operations. 相似文献
4.
Anion exchange (AEX) is a common downstream purification operation for biotechnology products manufactured in cell culture such as therapeutic monoclonal antibodies (mAbs) and Fc‐fusion proteins. We present a head‐to‐head comparison of the viral clearance efficiency of AEX adsorbers and column chromatography using the same process fluids and comparable run conditions. We also present overall trends from the CDER viral clearance database. In our comparison of multiple brands of resins and adsorbers, clearance of three model viruses (PPV, X‐MuLV, and PR772) was largely comparable, with some exceptions which may reflect run conditions that had not been optimized on a resin/membrane specific basis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:124–131, 2014 相似文献
5.
Anupa Anupa Vikrant Bansode Nikhil Kateja Anurag S. Rathore 《Biotechnology progress》2024,40(1):e3395
Charge heterogeneity of monoclonal antibodies is considered a critical quality attribute and hence needs to be monitored and controlled by the manufacturer. Typically, this is accomplished via separation of charge variants on cation exchange chromatography (CEX) using a pH or conductivity based linear gradient elution. Although an effective approach, this is challenging particularly during continuous processing as creation of linear gradient during continuous processing adds to process complexity and can lead to deviations in product quality upon slightest changes in gradient formation. Moreover, the long length of elution gradient along with the required peak fractionation makes process integration difficult. In this study, we propose a novel approach for separation of charge variants during continuous CEX chromatography by utilizing a combination of displacement mode chromatography and salt-based step elution. It has been demonstrated that while the displacement mode of chromatography enables control of acidic variants ≤26% in the CEX eluate, salt-based step gradient elution manages basic charge variant ≤25% in the CEX eluate. The proposed approach has been successfully demonstrated using feed materials with varying compositions. On comparing the designed strategy with 2-column concurrent (CC) chromatography, the resin specific productivity increased by 95% and resin utilization increased by 183% with recovery of main species >99%. Further, in order to showcase the amenability of the designed CEX method in continuous operation, the method was examined in our in-house continuous mAb platform. 相似文献
6.
G.S. Blank G. Zapata R. Fahrner M. Milton C. Yedinak H. Knudsen C. Schmelzer 《Bioseparation》2001,10(1-3):65-71
Expanded bed adsorption (EBA) was examined as the initial capture/purification step in the purification of monoclonal antibodies from Chinese hamster ovary (CHO) cultures. Two process alternatives each using EBA were compared to a conventional Protein A process without EBA. One alternative used Protein A affinity EBA followed by packed-bed cation and anion-exchange steps. The other alternative used cation-exchange EBA as the capture step followed by packed-bed Protein A and anion-exchange steps. The process using Protein A EBA produced comparable purity (host cell protein, DNA, Protein A, antibody aggregate) to the conventional process. However, the Protein A EBA column showed a significant decrease in dynamic capacity with a limited number of cycles. The process using cation EBA achieved comparable levels of host cell proteins (HCP) and DNA but not antibody aggregate or leached Protein A compared to the conventional process. 相似文献
7.
Brorson K Krejci S Lee K Hamilton E Stein K Xu Y 《Biotechnology and bioengineering》2003,82(3):321-329
Viral safety is a predominant concern for monoclonal antibodies (mAbs) and other recombinant proteins (RPs) with pharmaceutical applications. Certain commercial purification modules, such as nanofiltration and low-pH inactivation, have been observed to reliably clear greater than 4 log(10) of large enveloped viruses, including endogenous retrovirus. The concept of \"bracketed generic clearance\" has been proposed for these steps if it could be prospectively demonstrated that viral log(10) reduction value (LRV) is not impacted by operating parameters that can vary, within a reasonable range, between commercial processes. In the case of low-pH inactivation, a common step in mAb purification processes employed after protein A affinity chromatography, these parameters would include pH, time and temperature of incubation, the content of salts, protein concentration, aggregates, impurities, model protein pI, and buffer composition. In this report, we define bracketed generic clearance conditions, using a prospectively defined bracket/matrix approach, where low-pH inactivation consistently achieves >or=4.6 log(10) clearance of xenotropic murine leukemia virus (X-MLV), a model for rodent endogenous retrovirus. The mechanism of retrovirus inactivation by low-pH treatment was also investigated. 相似文献
8.
William Riordan Steve Heilmann Kurt Brorson Kannan Seshadri Yi He Mark Etzel 《Biotechnology and bioengineering》2009,103(5):920-929
Strong anion exchange chromatography has frequently been employed as a viral clearance step during downstream processing of biological therapeutics. When challenged with viruses having only slightly acidic isoelectric points, the performance of the anion exchange operation becomes highly dependent on the buffer salt concentration, with the virus log reduction value (LRV) dropping dramatically in buffers with 50–150 mM salt. In this work, a series of anion exchange membrane adsorbers utilizing alternative ligand chemistries instead of the traditional quaternary amine (Q) ligand have been developed that overcome this limitation. Four different ligands (agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide, and polyethyleneimine) achieved >5 LRV of bacteriophage ΦX174 (pI ~ 6.7) at pH 7.5 and up to 150 mM salt, compared to 0 LRV for the Q ligand. By evaluating structural derivatives of the successful ligands, three factors were identified that contributed to ligand salt tolerance: ligand net charge, ligand immobilization density on the membrane, and molecular structure of the ligand‐binding group. Based on the results of this study, membrane adsorbers that incorporate alternative ligands provide a more robust and salt tolerant viral clearance‐processing step compared to traditional strong anion exchange membrane adsorbers. Biotechnol. Bioeng. 2009;103: 920–929. © 2009 Wiley Periodicals, Inc. 相似文献
9.
Strauss DM Gorrell J Plancarte M Blank GS Chen Q Yang B 《Biotechnology and bioengineering》2009,102(1):168-175
The mammalian cell-lines used to produce biopharmaceutical products are known to produce endogenous retrovirus-like particles and have the potential to foster adventitious viruses as well. To ensure product safety and regulatory compliance, recovery processes must be capable of removing or inactivating any viral impurities or contaminants which may be present. Anion exchange chromatography (AEX) is a common process in the recovery of monoclonal antibody products and has been shown to be effective for viral removal. To further characterize the robustness of viral clearance by AEX with respect to process variations, we have investigated the ability of an AEX process to remove three model viruses using various combinations of mAb products, feedstock conductivities and compositions, equilibration buffers, and pooling criteria. Our data indicate that AEX provides complete or near-complete removal of all three model viruses over a wide range of process conditions, including those typically used in manufacturing processes. Furthermore, this process provides effective viral clearance for different mAb products, using a variety of feedstocks, equilibration buffers, and different pooling criteria. Viral clearance is observed to decrease when feedstocks with sufficiently high conductivities are used, and the limit at which the decrease occurs is dependent on the salt composition of the feedstock. These data illustrate the robust nature of the AEX recovery process for removal of viruses, and they indicate that proper design of AEX processes can ensure viral safety of mAb products. 相似文献
10.
Kelley BD Tobler SA Brown P Coffman JL Godavarti R Iskra T Switzer M Vunnum S 《Biotechnology and bioengineering》2008,101(3):553-566
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved. 相似文献
11.
12.
Ying Li Audrey Chang David Beattie Kathryn M. Remington 《Biotechnology and bioengineering》2020,117(11):3379-3389
Many manufacturers of biopharmaceuticals are moving from batch to continuous processing. While this approach offers advantages over batch processing, demonstration of viral clearance for continuous processes is challenging. Fluctuating output from a continuous process chromatography column results in a nonhomogeneous load for the subsequent column and must be considered when designing viral clearance studies. One approach to clearance studies is to downscale the connected unit operations and introduce virus by in-line spiking. This is challenging to be implemented at the contract research organization performing the clearance study given the complexity of systems and level of expertise required. Alternately, each unit operation could be evaluated in traditional batch mode but the spiking and loading conditions be modified to mimic the variance introduced by the transition between two connected columns. Using a standard chromatography system, we evaluated a flow-through anion exchange chromatography step in a monoclonal antibody (mAb) manufacturing process using five different methods to introduce the virus to the column. Our data show that whether the virus or the mAbs were introduced in concentrated peaks, or as a homogeneous batch, the clearance of mouse minute virus was similar. This study introduces an alternative way to evaluate viral clearance in a continuous process and demonstrates the robustness of anion exchange chromatography unit operating in continuous processing. 相似文献
13.
Charge variant analysis is a widely used tool to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs). Although it is a powerful technique for revealing mAb heterogeneity, an unexpected outcome, for example the appearance of previously undetected isoforms, requires further, time-consuming analysis. The process of identifying these unknowns can also result in unwanted changes to the molecule that are not attributable to the manufacturing process. To overcome this, we recently reported a method combining highly selective cation exchange chromatography-based charge variant analysis with on-line mass spectrometric (MS) detection. We further explored and adapted the chromatographic buffer system to expand the application range. Moreover, we observed no salt adducts on the native protein, also supported by the optimal choice of MS parameters, resulting in increased data quality and mass accuracy. Here, we demonstrate the utility of this improved method by performing an in-depth analysis of adalimumab before and after forced degradation. By combining molecular mass and retention time information, we were able to identify multiple modifications on adalimumab, including lysine truncation, glycation, deamidation, succinimide formation, isomerisation, N-terminal aspartic acid loss or C-terminal proline amidation and fragmentation along with the N-glycan distribution of each of these identified proteoforms. Host cell protein (HCP) analysis was performed using liquid chromatography-mass spectrometry that verified the presence of the protease Cathepsin L. Based on the presence of trace HCPs with catalytic activity, it can be questioned if fragmentation is solely driven by spontaneous hydrolysis or possibly also by enzymatic degradation. 相似文献
14.
Demonstration of viral clearance is a critical step in assuring the safety of biotechnology products. We generated a viral clearance database that contains product information, unit operation process parameters, and viral clearance data from monoclonal antibody and antibody‐related regulatory submissions to FDA. Here we present a broad overview of the database and resulting analyses. We report that the diversity of model viruses tested expands as products transition to late‐phase. We also present averages and ranges of viral clearance results by Protein A and ion exchange chromatography steps, low pH chemical inactivation, and virus filtration, focusing on retro‐ and parvoviruses. For most unit operations, an average log reduction value (LRV, a measure of clearance power) for retrovirus of >4 log10 were measured. Cases where clearance data fell outside of the anticipated range (i.e., outliers) were rationally explained. Lastly, a historical analysis did not find evidence of any improvement trend in viral clearance over time. The data collectively suggest that many unit operations in general can reliably clear viruses. Biotechnol. Bioeng. 2010;106: 238–246. Published 2010 Wiley Periodicals, Inc. 相似文献
15.
Patrick Sipple Tung Nguyen Krina Patel Neil Jaffe Yan Chen Anurag Khetan 《Biotechnology progress》2019,35(5):e2850
Biologics produced from CHO cell lines with endogenous virus DNA can produce retrovirus-like particles in cell culture at high titers, and other adventitious viruses can find their way through raw materials into the process to make a product. Therefore, it is the industry standard to have controls to avoid introduction of viruses into the production process, to test for the presence of viral particles in unclarified cell culture, and to develop purification procedures to ensure that manufacturing processes are robust for viral clearance. Data have been accumulated over the past four decades on unit operations that can inactivate and clear adventitious virus and provide a high degree of assurance for patient safety. During clinical development, biological products are traditionally tested at process set points for viral clearance. However, the widespread implementation of platform production processes to produce highly similar IgG antibodies for many indications makes it possible to leverage historical data and knowledge from representative molecules to allow for better understanding and control of virus safety. More recently, individualized viral clearance studies are becoming the rate-limiting step in getting new antibody molecules to clinic, particularly in Phase 0 and eIND situations. Here, we explore considerations for application of a generic platform virus clearance strategy that can be applied for relevant investigational antibodies within defined operational parameters in order to increase speed to the clinic and reduce validation costs while providing a better understanding and assurance of process virus safety. 相似文献
16.
Yumiko Masuda Yuka Ogino Kozo Yamaichi Yusuke Takahashi Koichi Nonaka Kaori Wakamatsu 《Biotechnology progress》2020,36(3):e2955
Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI − 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions. 相似文献
17.
William T. Riordan Steven M. Heilmann Kurt Brorson Kannan Seshadri Mark R. Etzel 《Biotechnology progress》2009,25(6):1695-1702
Clearance of impurities such as viruses, host cell protein (HCP), and DNA is a critical purification design consideration for manufacture of monoclonal antibody therapeutics. Anion exchange chromatography has frequently been utilized to accomplish this goal; however, anion exchange adsorbents based on the traditional quaternary amine (Q) ligand are sensitive to salt concentration, leading to reduced clearance levels of impurities at moderate salt concentrations (50–150 mM). In this report, membrane adsorbers incorporating four alternative salt tolerant anion exchange ligands were examined for impurity clearance: agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide (PHMB), and polyethyleneimine. Each of these ligands provided greater than 5 log reduction value (LRV) for viral clearance of phage ?X174 (pI ~ 6.7) at pH 7.5 and phage PR772 (pI ~ 4) at pH 4.2 in the presence of salt. Under these same conditions, the commercial Q membrane adsorber provided no clearance (zero LRV). Clearance of host‐cell protein at pH 7.5 was the most challenging test case; only PHMB maintained 1.5 LRV in 150 mM salt. The salt tolerance of PHMB was attributed to its large positive net charge through the presence of multiple biguanide groups that participated in electrostatic and hydrogen bonding interactions with the impurity molecules. On the basis of the results of this study, membrane adsorbers that incorporate salt tolerant anion exchange ligands provide a robust approach to impurity clearance during the purification of monoclonal antibodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
18.
Yinying Tao Aladein Ibraheem Lynn Conley Douglas Cecchini Sanchayita Ghose 《Biotechnology and bioengineering》2014,111(7):1354-1364
19.
Effects of pH,conductivity, host cell protein,and DNA size distribution on DNA clearance in anion exchange chromatography media
下载免费PDF全文

Melani C. Stone Jon Borman Gisela Ferreira P. David Robbins 《Biotechnology progress》2018,34(1):141-149
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 相似文献
20.
Dynamic binding capacity (DBC) decreases with increasing conductivity in the equilibrium regime for ion exchange chromatography. An exclusion regime has been demonstrated in ion exchange resins where DBC increases with increasing conductivity and decreasing protein charge. The purpose of this work was to examine the impact of the exclusion regime on impurity removal. Resin performance was evaluated based on dynamic binding capacities and purity within the exclusion and equilibrium regimes. The results revealed that Chinese hamster ovary proteins (CHOP), a major impurity, exhibit similar exclusion trends as the MAb proteins. The results further the understanding of the exclusion regime and its impact on product purity, a critical area for IEX development and optimization. 相似文献