首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stem cell niche: lessons from the Drosophila testis   总被引:1,自引:0,他引:1  
In metazoans, tissue maintenance and regeneration depend on adult stem cells, which are characterized by their ability to self-renew and generate differentiating progeny in response to the needs of the tissues in which they reside. In the Drosophila testis, germline and somatic stem cells are housed together in a common niche, where they are regulated by local signals, epigenetic mechanisms and systemic factors. These stem cell populations in the Drosophila testis have the unique advantage of being easy to identify and manipulate, and hence much progress has been made in understanding how this niche operates. Here, we summarize recent work on stem cells in the adult Drosophila testis and discuss the remarkable ability of these stem cells to respond to change within the niche.  相似文献   

2.
3.
Stem cells are characterized by their ability to self-renew and to produce numerous differentiated cell types, and are directly responsible for generating and maintaining tissues and organs. This property has long been attributed to the instructive signals that stem cells receive from their microenvironment - the so-called 'stem-cell niche'. Studies of stem cells in the Drosophila gonad have yielded much exciting insight into the structure of the niche and the signalling pathways that it produces to regulate the self-renewal of stem cells. These findings are illuminating our understanding of the self-renewing mechanisms of tissue stem cells in general.  相似文献   

4.
5.
6.
Guanosine 3', 5'-cyclic monophosphate (cGMP) signalling has received increasing attention over the last decade, since the discovery of the gaseous signalling molecule, nitric oxide, which activates cGMP synthesis. Furthermore, research into cGMP signalling has also been stimulated by the development of Viagra and pharmacologically active related compounds, which act to prevent cGMP breakdown. While much is known about the biochemical aspects of components of the cGMP signalling pathway, the precise in vivo roles of such components have only recently come to light through work in model organisms. This review outlines recent work utilising the genetic model organism Drosophila melanogaster in studies of organotypic cGMP signalling. While organisms such as Drosophila may not be the obvious choice for such studies, use of this model has proved that unique and detailed insights for cGMP signalling can be achieved.  相似文献   

7.
Stem cells are defined by the fact that they both self-renew, producing additional stem cells, and generate lineal descendants that differentiate into distinct functional cell types. In Drosophila, a small germline stem cell population is influenced by a complex microenvironment, the stem cell niche, which itself includes a somatic stem cell population. While stem cells are unique, their immediate descendants retain considerable stem cell character as they mitotically amplify prior to differentiation and can be induced to de-differentiate into stem cells. Despite their importance, very few genes are known that are expressed in the stem cells or their early amplifying daughters. We present here whole-genome microarray expression analysis of testes specifically enriched for stem cells, their amplifying daughters, and their niche. These studies have identified a number of loci with highly specific stem cell expression and provide candidate downstream targets of Jak/Stat self-renewal signaling. Furthermore, functional analysis for two genes predicted to be enriched has enabled us to define novel regulators of the germline lineage. The gene list generated in this study thus provides a potent resource for the investigation of stem cell identity and regulation from functional as well as evolutionary perspectives.  相似文献   

8.
9.
In the Drosophila testis, germline stem cells (GSCs) and somatic cyst stem cells (CySCs) are arranged around a group of postmitotic somatic cells, termed the hub, which produce a variety of growth factors contributing to the niche microenvironment that regulates both stem cell pools. Here we show that CySC but not GSC maintenance requires Hedgehog (Hh) signalling in addition to Jak/Stat pathway activation. CySC clones unable to transduce the Hh signal are lost by differentiation, whereas pathway overactivation leads to an increase in proliferation. However, unlike cells ectopically overexpressing Jak/Stat targets, the additional cells generated by excessive Hh signalling remain confined to the testis tip and retain the ability to differentiate. Interestingly, Hh signalling also controls somatic cell populations in the fly ovary and the mammalian testis. Our observations might therefore point towards a higher degree of organisational homology between the somatic components of gonads across the sexes and phyla than previously appreciated.  相似文献   

10.
Dendrites show remarkable diversity in morphology and function, but the mechanisms that produce the characteristic forms is poorly understood. Insect systems offer a unique opportunity to manipulate and study identified neurons in otherwise undisturbed environments. Recent studies in Drosophila show that dendritic targeting, branching patterns, territories, and metamorphic remodeling are controlled in specific ways, by intrinsic genetic programs and extrinsic cues, with important implications for function. Here, we review some recent advances in our understanding of dendritic development in insects, focusing primarily on insights that have been gained from studies of Drosophila.  相似文献   

11.
To function properly, tissue-specific stem cells must reside in a niche. The Drosophila testis niche is one of few niches studied in vivo. Here, a single niche, comprising ten hub cells, maintains both germline stem cells (GSC) and somatic stem cells (CySC). Here, we show that lines is an essential CySC factor. Surprisingly, lines-depleted CySCs adopted several characteristics of hub cells, including the recruitment of new CySCs. This led us to examine the developmental relationship between CySCs and hub cells. In contrast to a previous report, we did not observe significant conversion of steady-state CySC progeny to hub fate. However, we found that these two cell types derive from a common precursor pool during gonadogenesis. Furthermore, lines mutant embryos exhibited gonads containing excess hub cells, indicating that lines represses hub cell fate during gonadogenesis. In many tissues, lines acts antagonistically to bowl, and we found that this is true for hub specification, establishing bowl as a positively acting factor in the development of the testis niche.  相似文献   

12.
Cells exhibit an amazingly wide range of different forms, and in most cases the shape of a cell is crucial for performing its specific function(s). But how does a cell obtain its particular shape during development, how can the shape be adapted to different environmental conditions, and what are the consequences if morphogenesis is impaired? An ideal cell type to study these questions is the photoreceptor cell, a photosensitive cell present in most metazoa, highly specialised to transform the energy from the light into a visual response. In the last few years, studies in the Drosophila eye have led to a considerable increase in understanding of the genetic control of photoreceptor morphogenesis; lessons, which may apply to other cell types as well. Most of the genes involved have been conserved during evolution, and mutations in several of them result in retinal degeneration, both in flies and humans. This makes the fly eye an attractive model to unravel the genetic, molecular and cell biological basis of the mechanisms that prevent retinal dystrophies.  相似文献   

13.
14.
Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.  相似文献   

15.
16.
Boyle M  Wong C  Rocha M  Jones DL 《Cell Stem Cell》2007,1(4):470-478
Aging is characterized by compromised organ and tissue function. A decrease in stem cell number and/or activity could lead to the aging-related decline in tissue homeostasis. We have analyzed how the process of aging affects germ line stem cell (GSC) behavior in the Drosophila testis and report that significant changes within the stem cell microenvironment, or niche, occur that contribute to a decline in stem cell number over time. Specifically, somatic niche cells in testes from older males display reduced expression of the cell adhesion molecule DE-cadherin and a key self-renewal signal unpaired (upd). Loss of upd correlates with an overall decrease in stem cells residing within the niche. Conversely, forced expression of upd within niche cells maintains GSCs in older males. Therefore, our data indicate that age-related changes within stem cell niches may be a significant contributing factor to reduced tissue homeostasis and regeneration in older individuals.  相似文献   

17.
Notch signaling in hematopoiesis and lymphopoiesis: lessons from Drosophila   总被引:2,自引:0,他引:2  
The evolutionarily conserved Notch signaling pathway regulates a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal life. It is involved in embryonic organogenesis as well as in the maintenance of homeostasis of self-renewing systems. In this article, we review the role of Notch signaling in the hematopoietic system with particular emphasis on lymphocyte development and highlight the similarities in Notch function between Drosophila and mammalian differentiation processes. Recent studies indicating that aberrant NOTCH signaling is frequently linked to the induction of T leukemia in humans will also be discussed.  相似文献   

18.
19.
A common observation in the vertebrate testis is that new germ cell clones enter spermatogenesis proper before previously formed clones have completed their development. The extent to which the developmental advance of any given germ cell clone in any phase of spermatogenesis is dependent on that of neighboring clones and/or on the coordinating influence of associated Sertoli cells in the immediate vicinity or of others further away remains unclear. This review presents an overall synthesis of findings in an ancient vertebrate, the spiny dogfish shark and shows that, even at this phyletic level, the developmental advance of a given germ cell clone is the outcome of various processes emanating from its spatiotemporal relationship with (1) its own complement of Sertoli cells in the anatomically distinct spermatocyst and (2) Sertoli cells associated with other germ cell clones that lie upstream or downstream in the spermatogenic progression and that secrete, among others, androgen and estrogen destined for target sites upstream. Analysis of the protracted spermatogenic cycle shows the coordination in space and time of spermatogenic and steroidogenic events. Furthermore, the natural withdrawal of pituitary gonadotropin support in the dogfish causes a distinct and highly ordered gradient of apoptosis among the spermatogonial generations; this in turn is a major contributing factor to the cyclic nature of sperm production observed in this lower vertebrate. Because of the simplicity of their testicular organization, their cystic spermatogenesis and their phylogenetic position, cartilaginous fishes constitute a valid vertebrate reference system for comparative analysis with higher vertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号