首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We previously demonstrated that indoxyl sulfate induces senescence and dysfunction of proximal tubular cells by activating p53 expression. However, little is known about the role of nuclear factor (NF)-κB in these processes. The present study examines whether activation (phosphorylation) of NF-κB by indoxyl sulfate promotes senescence and dysfunction in human proximal tubular cells (HK-2 cells). Indoxyl sulfate induced phosphorylation of NF-κB p65 on Ser-276, which was suppressed by N-acetylcysteine, an antioxidant. Furthermore, indoxyl sulfate induced NF-κB p65 expression. Inhibitors of NF-κB (pyrrolidine dithiocarbamate and isohelenin) and NF-κB p65 small interfering RNA (siRNA) suppressed indoxyl sulfate-induced senescence-associated β-galactosidase activity and expression of p53, transforming growth factor (TGF)-β1, and α-smoothe muscle actin (SMA). The induction of p53 expression and p53 promoter activity by indoxyl sulfate were inhibited by pifithrin-α, p-nitro, an inhibitor of p53, whereas p53-transfected cells showed enhanced p53 promoter activity. NF-κB inhibitors suppressed indoxyl sulfate-induced p21 expression, whereas NF-κB p65 siRNA enhanced its expression. NF-κB inhibitors partially alleviated indoxyl sulfate-induced inhibition of cellular proliferation. NF-κB p65 siRNA-transfected cells showed less proliferation in the presence of indoxyl sulfate than control cells. Phosphorylated NF-κB p65 was expressed and colocalized with p53, p21, β-galactosidase, TGF-β1, and α-SMA in the kidneys of chronic renal failure (CRF) rats. AST-120, which reduces serum indoxyl sulfate level, suppressed their expression in the CRF rat kidneys. Taken together, NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. More notably, indoxyl sulfate accelerates proximal tubular cell senescence with progression of CRF through reactive oxygen species-NF-κB-p53 pathway.  相似文献   

3.
Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-κB p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-α (5 ng/ml, 20 min-6 h). Inhibitor of NF-κB or p38 significantly inhibited the TNF-α-induced VCAM-1 expression. Chemerin also inhibited TNF-α-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-α-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-α-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-α-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-α-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-κB and p38 through stimulation of Akt/eNOS signaling and NO production.  相似文献   

4.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. CCN3, also called nephroblastoma overexpressed gene (NOV), regulates proliferation and differentiation of cancer cells. However, the effect of CCN3 on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that CCN3 increased the migration and expression of matrix metalloproteinase (MMP)-13 in human chondrosarcoma cells (JJ012 cells). αvβ3 or αvβ5 monoclonal antibody (mAb), phosphatidylinositol 3-kinase (PI3K) inhibitors (Ly294002 and wortmannin) and Akt inhibitor inhibited the CCN3-induced increase of the migration and MMP-13 upregulation of chondrosarcoma cells. CCN3 stimulation increased the phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. In addition, NF-κB inhibitors also suppressed the cell migration and MMP-13 expression enhanced by CCN3. Moreover, CCN3 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-13 promoter. Taken together, our results indicate that CCN3 enhances the migration of chondrosarcoma cells by increasing MMP-13 expression through the αvβ3/αvβ5 integrin receptor, FAK, PI3K, Akt, p65, and NF-κB signal transduction pathway.  相似文献   

5.
Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT.  相似文献   

6.
7.
Oral squamous cell carcinoma (OSCC) has a striking tendency to migrate and metastasize. Cysteine-rich 61 (Cyr61), from the CCN gene family, is a secreted and matrix-associated protein, which is involved in many cellular activities such as growth and differentiation. However, the effects of Cyr61 on human OSCC cells are largely unknown. In this study, we found that Cyr61 increased the migration and the expression of matrix metalloproteinases-3 (MMP)-3 in human OSCC cells. αvβ5 or α6β1 monoclonal antibody (mAb), focal adhesion kinase (FAK) inhibitor, and mitogen-activated protein kinase (MEK) inhibitors (PD98059 and U0126) inhibited the Cyr61-induced increase of the migration and MMP-3 up-regulation of OSCC cells. Cyr61 stimulation increased the phosphorylation of FAK, MEK, and extracellular signal-regulated kinase (ERK). In addition, NF-κB inhibitors suppressed the cell migration and MMP-3 expression enhanced by Cyr61. Moreover, Cyr61 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-3 promoter. Taken together, our results indicate that Cyr61 enhances the migration of OSCC cells by increasing MMP-3 expression through the αvβ3 or α6β1 integrin receptor, FAK, MEK, ERK, and NF-κB signal transduction pathway.  相似文献   

8.
9.
10.
11.
12.
目的探讨β-淀粉样蛋白(β-amyloid,Aβ)促进BV2小胶质细胞产生炎性因子IL-1β和TNFα的作用机制。方法体外培养BV2小胶质细胞,应用Aβ1-42作用于BV2小胶质细胞,或用吡咯烷二硫代氨基甲酸盐(PDTC)预孵育再给予Aβ1-42刺激,实时荧光定量反转录聚合酶链反应法(RT–PCR)检测IL-1β和TNFαmRNA表达;免疫印迹法(Western blot)检测胞核中NF-κB p65及其抑制蛋白胞浆中IkBα的表达。结果 Aβ1-42作用于BV2小胶质细胞后,Westernblot显示胞浆内IkBα表达下降,胞核内NF-κB p65表达明显增加,RT-PCR测定IL-1β和TNFαmRNA的表达增加;给予NF-κB信号通路特异阻断剂PDTC后,胞浆IkBα的下降和胞核内NF-κB p65的增加均被抑制,同时IL-1β和TNFαmRNA的表达亦受到抑制,PDTC的抑制效果呈剂量依赖性。结论 Aβ可通过激活小胶质细胞NF-κB信号通路促进IL-1β和TNFα的表达。  相似文献   

13.
ABSTRACT

Oxidized low-density lipoprotein (ox-LDL) was known to induce endothelial cell injury to the progression of atherosclerosis (AS). Sophocarpine (SPC), a compound of sophora alkaloids isolated from the plant Sophora alopecuroides, has been shown to exhibit various pharmacological activities. This study was designed to investigate the protective effect of SPC on ox-LDL-induced endothelial cells and explored its underlying mechanism. Our results show that SPC pre-incubation ameliorated ox-LDL-mediated HAECs cytotoxicity, DNA fragmentation, and apoptosis in a dose-dependent manner. Moreover, SPC significantly downregulated the mRNA or protein expression level of pro-inflammatory mediators (TGF-β, IL-6, IL-1β, TNF-α) and pro-inflammatory vascular adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Mechanistically, SPC pre-treatment downregulated IκBα expression and inhibited translocation of NF-κB in ox-LDL-mediated HAECs, overexpression of NF-κB p65 counteracted the cytoprotective and anti-apoptotic effect of SPC, suggesting that its action is dependent on NF-κB signaling pathway. Collectively, SPC suppresses ox-LDL-induced HAECs injury by inhibiting the NF-κB signaling pathway.  相似文献   

14.
Lentinan, a cell wall β-glucan from the fruiting bodies of Lentinus edodes, is well known to be a biological defense modifier, but the signal transduction pathway(s) induced by Lentinan have not been elucidated. In this study, we extracted Lentinan (LNT-S) by ultrasonication from Lentinus edodes and report that, in murine RAW 264.7 macrophages, LNT-S glucan activated NF-κB p65 and triggered its nuclear translocation as determined by Western blotting. Moreover, LNT-S enhanced NF-κB-luciferase activity in the Dual-Luciferase gene system assay. Its upstream signaling molecules, MAPKs such as ERK1/2 and JNK1/2, were shown to be activated by assessing the level of phosphorylation in a time- and concentration-dependent manner, but its downstream proinflammatory enzyme, inducible NOS, was not observed. The data evaluated using a TNF-α ELISA kit and Griess reagent further demonstrated that no proinflammatory mediators such as TNF-α and NO were produced by LNT-S stimulation in RAW 264.7 cells. In contrast, LPS significantly induced inducible NOS expression and increased NO and TNF-α production, which are associated with activation of the NF-κB p65/p50 heterodimer complex. It is possible that LNT-S did not activate NF-κB p65/p50, and the activation of NF-κB p65 was not sufficient to stimulate cytokine production. These data demonstrate that LNT-S glucan carries out its immunomodulating activity by activating MAPK signaling pathways without secretion of TNF-α and NO.  相似文献   

15.
16.
Ghrelin is a well-characterized hormone that has protective effects on endothelial cells. Elevated HCY (homocysteine) can be a cardiovascular risk factor, but it is not known whether ghrelin can inhibit HCY-induced dysfunction and inflammatory response in rat CMECs (cardiac microvascular endothelial cells). We found that HCY treatment for 24 h inhibited proliferation and NO (nitric oxide) secretion, but with increased cell apoptosis and secretion of cytokines in CMECs. In contrast, ghrelin pretreatment significantly improved proliferation and NO secretion, and inhibited cell apoptosis and secretion of cytokines in HCY-induced CMECs. In addition, Western blot assay showed that NF-κB (nuclear factor κB) and cleaved-caspase 3 expression were elevated, and PCNA (proliferating cell nuclear antigen) and eNOS (endothelial nitric oxide synthase) expression were decreased after treatment with HCY, which was significantly reversed by pretreatment with ghrelin. The data suggest that ghrelin inhibits HCY-induced CMEC dysfunction and inflammatory response, probably mediated by inhibition of NF-κB activation.  相似文献   

17.
AimsSilibinin is the major active component of silymarin, a polyphenolic plant flavonoid that has anti-inflammatory effects. The modulatory effect of silibinin on monocyte function against Paracoccidioides brasiliensis (Pb18) has not yet been demonstrated. The present study investigated whether the effect of silibinin on nuclear factor-kappa B (NF-κB) pathways may affect the production of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), transforming growth factor beta (TGF-β1), prostaglandin E2 (PGE2), nitric oxide (NO) and fungicidal activity of human monocytes challenged in vitro with Pb18.Main methodsPeripheral blood monocytes from healthy individuals were treated with silibinin and challenged with Pb18 for 18 h. TNF-α, IL-10, TGF-β1 and PGE2 expression were determined by immunoenzymatic assay (ELISA) and NO release was determined by the accumulation of nitrite in culture supernatants. Fungicidal activity of monocytes was analyzed after treatment with interferon-gamma plus silibinin and challenge with Pb18. NF-κB activation in cultured monocytes was evaluated by flow cytometry and ELISA.Key findingsSilibinin partially inhibited p65NF-κB activation as the number of cells expressing this factor was reduced and the concentration of nuclear p65NF-κB was low, compared to untreated controls. The addition of silibinin also resulted in suppression of TNF-α, IL-10, TGF-β1, PGE2 and NO production but did not affect the fungicidal activity of monocytes against Pb18.SignificanceSilibinin exerts anti-inflammatory and anti-fibrotic effects on CD14± human monocytes challenged by Pb18 by partial inhibition of p65NF-κB activation.  相似文献   

18.
19.
Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号