首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine organisms have been recognized as rich sources of bioactive compounds with valuable nutraceutical and pharmaceutical potentials. Recently, marine bioactive peptides have gained much attention because of their numerous health beneficial effects. Notably, these peptides exhibit various biological activities such as antioxidant, anti-hypertensive, anti-human immunodeficiency virus, anti-proliferative, anticoagulant, calcium-binding, anti-obesity and anti-diabetic activities. This review mainly presents biological activities of peptides from marine organisms and emphasizing their potential applications in foods as well as pharmaceutical areas.  相似文献   

2.
Marine ascidians are considered as one of the richest sources of bioactive compounds. The extraction and utilization of marine peptides have been attracted much attention owing to their potential health benefits. Most of the bioactive compounds from marine ascidians are already in different phases of the clinical and preclinical pipeline. They can be used in different functional and nutraceutical values due to their antineoplastic, antihypertensive, antioxidant, and antimicrobial properties. The screening in vivo and in vitro bioassays are coupled to the purification process for the exploration of its biological interest which is of great value. The growing significance to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs and other drugs are in clinical/pre-clinical trials. The present review highlights the recent research progress in marine ascidians’ peptides and its prospects for the future pharmaceutical development.  相似文献   

3.
海洋天然产物的研究与开发   总被引:7,自引:1,他引:6  
人们已从海藻、腔肠动物、海绵、海鞘、苔藓虫、软体动物、鱼类等海洋生物中分离到大量化学结构独特、生理活性强烈的物质。这些物质的化学结构可分为:聚醚类、大环内酯、萜类、生物碱、环肽、甾醇、多糖和不饱和脂肪酸等。其中,许多具有抗菌、抗真菌、抗肿瘤、抗病毒和心脑血管活性等作用,有的已进入临床试验阶段,可望发展成新药。  相似文献   

4.
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.  相似文献   

5.
Allenic and cumulenic lipids   总被引:1,自引:0,他引:1  
Nowadays, about 200 natural allenic metabolites, more than 2700 synthetic allenic compounds, and about 1300 cumulenic structures are known. The present review describes research on natural as well as some biological active allenic and cumulenic lipids and related compounds isolated from different sources. Intensive searches for new classes of pharmacologically potent agents produced by living organisms have resulted in the discovery of dozens of such compounds possessing high anticancer, cytotoxic, antibacterial, antiviral, and other activities. Known allenic and cumulenic compounds can be subdivided on several structural classes: fatty acids, hydrocarbons, terpenes, steroids, carotenoids, marine bromoallenes, peptides, aromatic, cumulenic, and miscellaneous compounds. This review emphasizes the role of natural and synthetic allenic and cumulenic lipids and other related compounds as an important source of leads for drug discovery.  相似文献   

6.
Najafian L  Babji AS 《Peptides》2012,33(1):178-185
Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.  相似文献   

7.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

8.
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.  相似文献   

9.
Marine Micromonospora was revealed to be a rather untapped and a rich source of chemically diverse and unique bioactive natural products. This review is aimed to make a comprehensive survey of secondary metabolites that were derived from marine Micromonospora including chemical diversity and biological activities. A total of 116 compounds from 41 marine Micromonospora species have been reported, covering the literatures from 1997 to 2019. These compounds contain several structural classes such as polyketides (PKS), nonribosomal peptides (NRPS), PKS‐NRPS hybrids, terpenes and others, and they present cytotoxic, antibacterial, antiparasitic, chemopreventive or antioxidant activities.  相似文献   

10.
Discovery of novel metabolites from marine actinomycetes   总被引:6,自引:0,他引:6  
Recent findings from culture-dependent and culture-independent methods have demonstrated that indigenous marine actinomycetes exist in the oceans and are widely distributed in different marine ecosystems. There is tremendous diversity and novelty among the marine actinomycetes present in marine environments. Progress has been made to isolate novel actinomycetes from samples collected at different marine environments and habitats. These marine actinomycetes produce different types of new secondary metabolites. Many of these metabolites possess biological activities and have the potential to be developed as therapeutic agents. Marine actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.  相似文献   

11.
Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid–like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein‐derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino‐acid‐containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.  相似文献   

12.
Marine organisms represent a valuable source of new compounds. The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new active substances in the field of the development of bioactive products. In this paper, the molecular diversity of different marine peptides is described as well as information about their biological properties and mechanisms of action is provided. Moreover, a short review about isolation procedures of selected bioactive marine peptides is offered. Novel peptides from sponges, ascidians, mollusks, sea anemones and seaweeds are presented in association with their pharmacological properties and obtainment methods.  相似文献   

13.
Until 2004, the secondary metabolites of marine organisms of the Vietnamese territorial waters had been studied very poorly. Only four new compounds were isolated from 1977 to 2003. Joint Russian‐Vietnamese expeditions aboard the research vessel ‘Akademik Oparin’ made it possible to study in detail the chemical diversity of marine micro‐ and macroorganisms. As a result of five expeditions, more than 250 low‐molecular weight natural compounds, including 117 new metabolites, were isolated from marine invertebrates and microfilamentous fungi. Their biological activities, such as cytotoxic, cytoprotective, and antioxidant activities, were investigated. Information about the structure and biological activity of the compounds, the source for their isolation and the geographical location of the objects is summarized in this review.  相似文献   

14.
Bioactive compounds produced by cyanobacteria   总被引:7,自引:0,他引:7  
Cyanobacteria produce a large number of compounds with varying bioactivities. Prominent among these are toxins: hepatotoxins such as microcystins and nodularins and neurotoxins such as anatoxins and saxitoxins. Cytotoxicity to tumor cells has been demonstrated for other cyanobacterial products, including 9-deazaadenosine, dolastatin 13 and analogs. A number of compounds in cyanobacteria are inhibitors of proteases — micropeptins, cyanopeptolins, oscillapeptin, microviridin, aeruginosins- and other enzymes, while still other compounds have no recognized biological activities. In general cyclic peptides and depsipeptides are the most common structural types, but a wide variety of other types are also found: linear peptides, guanidines, phosphonates, purines and macrolides. The close similarity or identity in structures between cyanobacterial products and compounds isolated from sponges, tunicates and other marine invertebrates suggests the latter compounds may be derived from dietary or symbiotic blue-green algae.  相似文献   

15.
This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.  相似文献   

16.
A plethora of structurally novel bioactive secondary metabolites have been reported from the prokaryotic filamentous marine cyanobacteria in the past few decades. In addition to the production of harmful toxins, these marine blue-green algae are emerging as an important source of anticancer drugs. The majority of these potent biomolecules, including the dolastatins, curacin A, hectochlorin, the apratoxins, and the lyngbyabellins, belongs to the mixed polyketide–polypeptide structural class. Furthermore, a high proportion of these natural products target eukaryotic cytoskeleton, such as tubulin and actin microfilaments, making them an attractive source of potential anticancer drugs. In recent years, a number of potent marine cyanobacteria have also been reported to modulate cell death and apoptosis in cancer cells as well as target enzymes such as histone deacetylase. A number of marine cyanobacterial compounds have also served as structural templates for the generation of new drug leads, further attesting to the importance of these marine microbes as an important source of new pharmaceuticals. This review serves to highlight the chemistry and biology of selected anticancer marine cyanobacterial natural products exhibiting significant biological activities in the nanomolar or submicromolar range, and their discussion will be based on the different modes of action.  相似文献   

17.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

18.
Abstract

Glycosylation is considered to be an important reaction for the chemical modification of compounds with useful biological activities. Glycoside hydrolases are biotechnologically attractive enzymes which can be used in synthetic reactions for assembling glycosidic linkages with absolute stereoselectivity at an anomeric centre. Most of these enzymes are commercially available but there is great interest in the search for new biocatalysts with original catalytic characteristics. The marine environment has shown to be a very interesting source for new glycosyl hydrolases for both hydrolytic and synthetic aspects. In particular, Aplysia fasciata a marine herbivorous mollusc has been shown to be a potent producer of a library of glycoside hydrolases applied to the synthesis of glycosidic bonds. The impressive assortment of glycosidases in marine organisms clearly indicates that the potential biodiversity of these enzymes is still largely unexplored and that potential applications of biocatalysts from the sea will increase in the near future.  相似文献   

19.
Several species of ascidians (phylum Chordata, subphylum Urochordata) contain a group of oligopeptides called "tunichromes" in their blood cells. These peptides have been implicated in (a) metal chelation and accumulation/sequestration of vanadium or iron; (b) crosslinking of structural fibers in tunic formation, (c) wound healing and (d) defense reactions. However, their biosynthesis, metabolism, and biological function remain largely un-elucidated due to their extreme instability and high reactivity. Tunichromes and related compounds uniquely possess dehydrodopamine moieties, all originating from post-translational modification of peptidyl tyrosine. It is conceivable that the presence of such novel post-translationally modified groups provide attributes that are crucial for their biological roles. Therefore, we examined the chemistry and reactivity of tunichromes in light of the available knowledge of the biochemistry of simple monomeric dehydro-N-acyldopamine units. Based on the reactivity of such simple compounds, the potential biological activities of tunichromes are predicted. Their possible biosynthetic route from peptidyl tyrosine is critically evaluated to provide a better basis for unraveling their biological functions. Prevalence of dehydro-N-acyldopamine units in different tunichromes, some marine antibiotic compounds, insect cuticular sclerotizing precursors and some bioadhesive marine proteins may aid in the de novo design of unique biomaterials with potential antibiotic/adhesive properties.  相似文献   

20.
Huang R  Zhou X  Xu T  Yang X  Liu Y 《化学与生物多样性》2010,7(12):2809-2829
Diketopiperazines (DKPs), which are cyclic dipeptides, have been detected in a variety of natural resources. Recently, the interest in these compounds increased significantly because of their remarkable bioactivity. This review deals with the chemical structures, biosynthetic pathways, and biological activities of DKPs from marine microorganisms, sponges, sea stars, tunicates (ascidians), and red algae. The literature has been covered up to December 2008, and a total 124 DKPs from 104 publications have been discussed and reviewed. Some of these compounds have been found to possess various bioactivities including cytotoxicity, and antibacterial, antifungal, antifouling, plant-growth regulatory, and other activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号