首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to use zebrafish as a model to investigate how vitamin D and its receptors interact to control Ca2+ uptake function. Low-Ca2+ fresh water stimulated Ca2+ influx and expressions of epithelial calcium channel (ecac), vitamin D-25-hydroxylase (cyp2r1), vitamin D receptor a (vdra), and vdrb in zebrafish. Exogenous vitamin D increased Ca2+ influx and expressions of ecac and 25-hydroxyvitamin D3-24-hydroxylase (cyp24a1), but downregulated 1α-OHase (cyp27b1) with no effects on other Ca2+ transporters. Morpholino oligonucleotide knockdown of VDRa, but not VDRb, was found as a consequence of calcium uptake inhibition by knockdown of ecac, and ossification of vertebrae is impaired. Taken together, vitamin D-VDRa signaling may stimulate Ca2+ uptake by upregulating ECaC in zebrafish, thereby clarifying the Ca2+-handling function of only a VDR in teleosts. Zebrafish may be useful as a model to explore the function of vitamin D-VDR signaling in Ca2+ homeostasis and the related physiological processes in vertebrates.  相似文献   

2.
Borski RJ  Hyde GN  Fruchtman S 《Steroids》2002,67(6):539-548
While the mechanisms governing genomically mediated glucocorticoid actions are becoming increasingly understood, relatively little is known with regard to the cell signaling pathways that transduce rapid glucocorticoid actions. Studies of the cultured tilapia rostral pars distalis (RPD), a naturally segregated region of the fish pituitary gland that contains a 95-99% pure population of prolactin (PRL) cells and is easily dissected and maintained in a completely defined, serum-free media, indicate that physiological concentrations of cortisol rapidly inhibit PRL release. The attenuative action of cortisol on PRL release occurs within 10-20 min, is insensitive to the protein synthesis inhibitor, cycloheximide, and mimicked by its membrane impermeable analog, cortisol-21 hemisuccinate-conjugated bovine serum albumin (BSA). Cortisol and somatostatin, a peptide known to work through membrane receptors to inhibit PRL release, rapidly and reversibly reduces intracellular free Ca(2+) (Ca(i)(2+)), and inhibits 45Ca(2+) influx and BAYK-8644 induced PRL release. Preliminary investigations show cortisol, but not somatostatin, suppresses phospholipase C (PLC) activity in PRL cell membrane preparations. In addition, cortisol and somatostatin reduce intracellular cAMP and membrane adenylyl cyclase activity. These findings indicate that the acute inhibitory effects of cortisol on PRL release occur through a nongenomic mechanism involving interactions with the plasma membrane and inhibition of both the Ca(2+) and cAMP signal transduction pathways. Cortisol may reduce Ca(i)(2+) by inhibiting influx through L-type voltage-gated channels and possibly release through a PLC/inositol triphosphate sensitive intracellular Ca(2+) pool. In addition, it is also likely the steroid inhibits adenylyl cyclase activity in events leading to reduced cAMP production and the subsequent release of PRL.  相似文献   

3.
Cortisol potentiated norepinephrine (NE)-mediated contractions in ovine uterine arteries (UA). We tested the hypothesis that cortisol regulated alpha(1)-adrenoceptor-mediated pharmacomechanical coupling differentially in nonpregnant UA (NUA) and pregnant UA (PUA). Cortisol (10 ng/ml for 24 h) significantly increased contractile coupling efficiency of alpha(1)-adrenoceptors in NUA, but increased alpha(1)-adrenoceptor density in PUA. Cortisol potentiated NE-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] synthesis in both NUA and PUA, but increased coupling efficiency of alpha(1)-adrenoceptors to Ins(1,4,5)P(3) synthesis only in NUA. Carbenoxolone alone did not affect NE-mediated Ins(1,4,5)P(3) production, but significantly enhanced cortisol-mediated potentiation of NE-stimulated Ins(1,4,5)P(3) synthesis in PUA. In addition, cortisol potentiated the NE-induced increase in Ca(2+) concentration in PUA, but increased NE-mediated contraction for a given amount of Ca(2+) concentration in NUA. Collectively, the results indicate that cortisol potentiates NE-mediated contractions differentially in NUA and PUA, i.e., by upregulating alpha(1)-adrenoceptor density leading to increased Ca(2+) mobilization in PUA while increasing alpha(1)-adrenoceptor coupling efficiency and myofilament Ca(2+) sensitivity in NUA. In addition, the results suggest that pregnancy increases type 2 11 beta-hydroxysteroid dehydrogenase activity in the UA.  相似文献   

4.
The purpose of the present study was to compare the ability of larvae of different species, goldfish (Carassius auratus), zebrafish (Danio rerio), and ayu (Plecoglossus altivelis), to regulate their calcium balance. Whole-body Ca(2+) content and Ca(2+) influx in the larvae of the three species, which were incubated in low- (0.02 mM), mid- (0.2 mM), and high- (2.0 mM) Ca(2+) artificial fresh water from embryonic stages, were compared. The Ca(2+) uptake kinetics were determined in zebrafish and goldfish incubated in high- or low-Ca(2+) artificial fresh water. Ca(2+) content of both zebrafish and ayu acclimated to low-Ca(2+) media were significantly lower than those acclimated to mid- or high-Ca(2+) media. However, Ca(2+) contents of goldfish in low-, mid-, and high-Ca(2+) groups showed no significant differences. In goldfish, Ca(2+) influx in the low-Ca(2+) group was significantly higher than those of the mid- and high-Ca(2+) groups. In contrast, the Ca(2+) influx rate in the low-Ca(2+) group was significantly lower than those in the mid- and high-Ca(2+) groups in zebrafish and ayu. Compared to the high-Ca(2+) group, the low-Ca(2+) group of goldfish showed a 13% increase in the maximal velocity (J(max)) and an 84% decrease in the Michaelis constant (K(m)) for Ca(2+) influx. Smaller changes, i.e., an 8% increase in J(max) and a 67% decrease in K(m), were found in zebrafish larvae. Goldfish possess a more effective Ca(2+) regulatory capacity than do zebrafish and ayu. Differences in the strategies for Ca(2+) balance may be associated with different development patterns and environments in which these fish naturally occur.  相似文献   

5.
6.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D(3) metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)(2)D(3)) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxralpha, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrbeta, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)(2)D(3)) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

7.
8.
In rainbow trout (Oncorhynchus mykiss), selection for divergent post-stress plasma cortisol levels has yielded low (LR)- and high (HR) responsive lines, differing in behavioural and physiological aspects of stress coping. For instance, LR fish display prolonged retention of a fear response and of previously learnt routines, compared to HR fish. This study aims at investigating putative central nervous system mechanisms controlling behaviour and memory retention. The stress hormone cortisol is known to affect several aspects of cognition, including memory retention. Cortisol acts through glucocorticoid receptors 1 and 2 (GR1 and 2) and a mineralcorticoid receptor (MR), all of which are abundantly expressed in the salmonid brain. We hypothesized that different expressions of MR and GRs in LR and HR trout brains could be involved in the observed differences in cognition. We quantified the mRNA expression of GR1, GR2 and MR in different brain regions of stressed and non-stressed LR and HR trout. The expression of MR was higher in LR than in HR fish in all brain parts investigated. This could be associated with reduced anxiety and enhanced memory retention in LR fish. MR and GR1 expression was also subject to negative regulation by stress in a site-specific manner.  相似文献   

9.
Activation of precursor 25‐hydroxyvitamin D3 (25D) to hormonal 1,25‐dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalysed by the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (1α‐hydroxylase). To establish new models for assessing the physiological importance of the 1α‐hydroxylase‐25D‐axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α‐hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5–150 nM) or active 1,25D (0.1–10 nM) induced dose responsive expression (15–95‐fold) of the vitamin D‐target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full‐length zebrafish cyp27b1 cDNA was then generated using RACE and RT‐PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC‐8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than twofold induction of CYP24A1 mRNA expression and a 25‐fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.  相似文献   

11.
12.
The hexose supply and subsequent metabolism are crucial for the operations of the iono- and osmoregulatory mechanisms in fish, but how hexose is transported and supplied to cells of the ionoregulatory epithelia is unknown. Three zebrafish glucose transporters (zGLUTs), zGLUT1a, -13.1, and -6, were previously found to respectively be expressed by ionocytes (Na(+)-K(+)-ATPase-rich, Na(+)-Cl(-) cotransporter-expressing, and H(+)-ATPase-rich cells) and adjacent energy-depositing cells [glycogen-rich (GR) cells] in zebrafish skin and gills (32). The present study aimed to test if the transport kinetics of these three zGLUTs differ, and if the transport functional differences are of physiological relevance to the respective functions of epithelial cells. The three zGLUTs expressed by Xenopus laevis oocytes revealed different d-glucose transport kinetics; zGLUT13.1 showed the lowest Michaelis constant (K(m)), whereas zGLUT6 had the highest K(m) and maximal velocity. In morpholino injection experiments, translational knockdown of zGLUT1a and -13.1, respectively, impaired Cl(-)/Ca(2+) and Na(+)/Ca(2+) uptake, but loss-of-function of zGLUT6 did not cause a significant effect on ion uptake functions in zebrafish. Based on these results, zGLUT1a and -13.1 appear to be superior to zGLUT6 in competing for glucose under a situation of low blood glucose due to extensive energy consumption, whereas, in a high blood glucose situation, zGLUT6 is able to absorb the excess glucose for energy deposition. The timely and sufficient supply of energy to ionocytes so that they can carry out ion regulation is definitely a more important event than storing energy in GR cells, particularly when acute environmental change disturbs the ion balance in zebrafish.  相似文献   

13.
The Japanese flounder (Paralichthys olivaceus) is a teleost fish with an XX/XY sex determination system. XX flounder can be induced to develop into phenotypic females or males, by rearing them at 18°C or 27°C, respectively, during the sex differentiation period. Therefore, the flounder provides an excellent model to study the molecular mechanisms underlying temperature-dependent sex determination. We previously showed that cortisol, the major glucocorticoid produced by the interrenal cells in teleosts, causes female-to-male sex reversal by directly suppressing mRNA expression of ovary-type aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens in the gonads. Furthermore, an inhibitor of cortisol synthesis prevented masculinization of XX flounder at 27°C, suggesting that masculinization by high temperature is due to the suppression of cyp19a1 mRNA expression by elevated cortisol levels during gonadal sex differentiation in the flounder. In the present study, we found that exposure to high temperature during gonadal sex differentiation upregulates the mRNA expression of retinoid-degrading enzyme (cyp26b1) concomitantly with masculinization of XX gonads and delays meiotic initiation of germ cells. We also found that cortisol induces cyp26b1 mRNA expression and suppresses specific meiotic marker synaptonemal complex protein 3 (sycp3) mRNA expression in gonads during the sexual differentiation. In conclusion, these results suggest that exposure to high temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by elevating cortisol levels during gonadal sex differentiation in Japanese flounder.  相似文献   

14.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

15.
Intracellular zinc signaling is important in the control of a number of cellular processes. Hormonal factors that regulate cellular zinc influx and initiate zinc signals are poorly understood. The present study investigates the possibility for cross talk between the glucocorticoid and zinc signaling pathways in cultured rainbow trout gill epithelial cells. The rainbow trout metallothionein A (MTA) gene possesses a putative glucocorticoid response element and multiple metal response elements 1042 base pairs upstream of the start codon, whereas metallothionein B (MTB) and zinc transporter-1 (ZnT1) have multiple metal response elements but no glucocorticoid response elements in this region. Cortisol increased MTA, MTB, and ZnT1 gene expression, and this stimulation was enhanced if cells were treated with cortisol together with zinc. Cells treated with zinc showed increased zinc accumulation, transepithelial zinc influx (apical to basolateral), and intracellular labile zinc concentrations. These responses were also significantly enhanced in cells pretreated with cortisol and zinc. The cortisol-mediated effects were blocked by the glucocorticoid receptor (GR) antagonist RU-486, indicating mediation via a GR. In reporter gene assays, zinc stimulated MTA promoter activity, whereas cortisol did not. Furthermore, cortisol significantly reduced zinc-stimulated MTA promoter activity in cells expressing exogenous rainbow trout GR. These results demonstrate that cortisol enhances cellular zinc uptake, which in turn stimulates expression of MTA, MTB, and ZnT1 genes.  相似文献   

16.
The purpose of the present work was to study the possible role of the epithelial Ca(2+) channel (ECaC) in the Ca(2+) uptake mechanism in developing zebrafish (Danio rerio). With rapid amplification of cDNA ends, full-length cDNA encoding the ECaC of zebrafish (zECaC) was cloned and sequenced. The cloned zECaC was 2,578 bp in length and encoded a protein of 709 amino acids that showed up to 73% identity with previously described vertebrate ECaCs. The zECaC was found to be expressed in all tissues examined and began to be expressed in the skin covering the yolk sac of embryos at 24 h postfertilization (hpf). zECaC-expressing cells expanded to cover the skin of the entire yolk sac after embryonic development and began to occur in the gill filaments at 96 hpf, and thereafter zECaC-expressing cells rapidly increased in both gills and yolk sac skin. Corresponding to ECaC expression profile, the Ca(2+) influx and content began to increase at 36-72 hpf. Incubating zebrafish embryos in low-Ca(2+) (0.02 mM) freshwater caused upregulation of the whole body Ca(2+) influx and zECaC expression in both gills and skin. Colocalization of zECaC mRNA and the Na(+)-K(+)-ATPase alpha-subunit (a marker for mitochondria-rich cells) indicated that only a portion of the mitochondria-rich cells expressed zECaC mRNA. These results suggest that the zECaC plays a key role in Ca(2+) absorption in developing zebrafish.  相似文献   

17.
Female European eels, Anguilla anguilla, were given a single intra-arterial injection via a catheter of cortisol hemisuccinate at doses ranging from 3.5 to 35 micrograms (15 to 150 micrograms/kg body wt), yielding mean plasma cortisol levels of 87-410 ng/ml 2 hr after injection. Cortisol treatment (17.5 and 35 micrograms) significantly decreased plasma levels of thyroxine (T4) and triiodothyronine (T3) within 24 hr relative to those in control fish. Cortisol treatment (35 micrograms) appeared to increase the clearance rate of 125I-T3 from plasma and the proportionate uptake of radioactivity in certain tissues after injection of 125I-T3. Cortisol treatment had no apparent effect on the plasma clearance of 125I-T4 or tissue distribution of radioactivity after injection of 125I-T4.  相似文献   

18.
We recently showed that excessive fructose consumption, already associated with numerous metabolic abnormalities, reduces rates of intestinal Ca(2+) transport. Using a rat lactation model with increased Ca(2+) requirements, we tested the hypothesis that mechanisms underlying these inhibitory effects of fructose involve reductions in renal synthesis of 1,25-(OH)(2)D(3). Pregnant and virgin (control) rats were fed isocaloric fructose or, as controls, glucose, and starch diets from d 2 of gestation to the end of lactation. Compared to virgins, lactating dams fed glucose or starch had higher rates of intestinal transcellular Ca(2+) transport, elevated intestinal and renal expression of Ca(2+) channels, Ca(2+)-binding proteins, and CaATPases, as well as increased levels of 25-(OH)D(3) and 1,25-(OH)(2)D(3). Fructose consumption prevented almost all of these lactation-induced increases, and reduced vitamin D receptor binding to promoter regions of Ca(2+) channels and binding proteins. Changes in 1,25-(OH)(2)D(3) level were tightly correlated with alterations in expression of 1α-hydroxylase but not with levels of parathyroid hormone and of 24-hydroxylase. Bone mineral density, content, and mechanical strength each decreased with lactation, but then fructose exacerbated these effects. When Ca(2+) requirements increase during lactation or similar physiologically challenging conditions, excessive fructose consumption may perturb Ca(2+) homeostasis because of fructose-induced reductions in synthesis of 1,25-(OH)(2)D(3).  相似文献   

19.
20.
Cortisol produced biochemical pathway-specific effects on metabolic enzymes and other macromolecules in the freshwater catfish, Clarias batrachus. Injection of cortisol increased 1.6-fold activity of citrate synthase (CS) in brain, liver and skeletal muscle of the fish over vehicle-injected control, while administration of metyrapone (a cortisol synthesis inhibitor) reduced CS activity by 52%. Cortisol treatment of metyrapone-treated fish induced CS activity by approximately 2.5-fold, which was blocked after administration of actinomycin D or cycloheximide. This shows de novo synthesis of CS to enhance aerobic capacity of fish. In contrast the activities of glucose-6-phosphate dehydrogenase (G6-PDH) and lactate dehydrogenase (LDH) increased in response to metyrapone and decreased after administration of cortisol in all the three tissues. The cortisol-mediated decrease in G6-PDH and LDH activities reflects reduction in biosynthetic and anaerobic capacity of fish. Administration of metyrapone significantly increased RNA/DNA ratio and protein but cortisol decreased these macromolecular contents in brain, liver and skeletal muscle. It shows cortisol-induced decrease in protein synthesis capacity of fish. The present study suggests that cortisol-induces catabolic and aerobic but inhibits anabolic and anaerobic processes in freshwater catfish. The cortisol-dependent metabolic responses may also be associated with the permissive effect of cortisol on other hormone(s) in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号