首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duan X  Chang JH  Ge S  Faulkner RL  Kim JY  Kitabatake Y  Liu XB  Yang CH  Jordan JD  Ma DK  Liu CY  Ganesan S  Cheng HJ  Ming GL  Lu B  Song H 《Cell》2007,130(6):1146-1158
Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis. Unexpectedly, downregulation of DISC1 leads to accelerated neuronal integration, resulting in aberrant morphological development and mispositioning of new dentate granule cells in a cell-autonomous fashion. Functionally, newborn neurons with DISC1 knockdown exhibit enhanced excitability and accelerated dendritic development and synapse formation. Furthermore, DISC1 cooperates with its binding partner NDEL1 in regulating adult neurogenesis. Taken together, our study identifies DISC1 as a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in neuronal development, including adult neurogenesis.  相似文献   

2.
Mechanisms and functional implications of adult neurogenesis   总被引:4,自引:0,他引:4  
Zhao C  Deng W  Gage FH 《Cell》2008,132(4):645-660
The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.  相似文献   

3.
Neurogenesis takes place in the mammalian hippocampus throughout the whole life and deficient adult hippocampal neurogenesis has been related to neurological conditions like Alzheimer disease (AD), Parkinson disease (PD) and epilepsy. The molecular mechanisms by which immature neurons and their extending neurites find their appropriate position and target area remain largely unknown. Recent work by Jessberger et al.1 examines the role of Cdk5 in normal adult neurogenesis by a retroviral knock-down approach. Cdk5 is shown to be implicated in the migration of newborn neurons into the granule cell layer (GCL), as well as, in correct targeting of dendrites from newborn granule cells (GC) into the molecular layer (ML) of the dentate gyrus (DG). The study also shows that aberrant dendrites still seem to become synaptically integrated into the existing circuitry thereby suggesting a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation. The finding of Cdk5 guiding this integration of new born neurons at the physiologically appropriate place is an important step towards understanding adult neurogenesis that may help to overcome problems with the restorative use of neural stem cells in present grafting approaches in neurological diseases.Key words: cyclin-dependent kinase 5 (cdk5), adult neurogenesis, dentate gyrus  相似文献   

4.
Epidemiological studies indicate that intellectual activity prevents or delays the onset of Alzheimer's disease (AD). Similarly, cognitive stimulation using environmental enrichment (EE), which increases adult neurogenesis and functional integration of newborn neurons into neural circuits of the hippocampus, protects against memory decline in transgenic mouse models of AD, but the mechanisms involved are poorly understood. To study the therapeutic benefits of cognitive stimulation in AD we examined the effects of EE in hippocampal neurogenesis and memory in a transgenic mouse model of AD expressing the human mutant β-amyloid (Aβ) precursor protein (APP(Sw,Ind)). By using molecular markers of new generated neurons (bromodeoxiuridine, NeuN and doublecortin), we found reduced neurogenesis and decreased dendritic length and projections of doublecortin-expressing cells of the dentate gyrus in young APP(Sw,Ind) transgenic mice. Moreover, we detected a lower number of mature neurons (NeuN positive) in the granular cell layer and a reduced volume of the dentate gyrus that could be due to a sustained decrease in the incorporation of new generated neurons. We found that short-term EE for 7 weeks efficiently ameliorates early hippocampal-dependent spatial learning and memory deficits in APP(Sw,Ind) transgenic mice. The cognitive benefits of enrichment in APP(Sw,Ind) transgenic mice were associated with increased number, dendritic length and projections to the CA3 region of the most mature adult newborn neurons. By contrast, Aβ levels and the total number of neurons in the dentate gyrus were unchanged by EE in APP(Sw,Ind) mice. These results suggest that promoting the survival and maturation of adult generated newborn neurons in the hippocampus may contribute to cognitive benefits in AD mouse models.  相似文献   

5.
The adult hippocampus is one of the primary neural structures involved in memory formation. In addition to synapse-specific modifications thought to encode information at the subcellular level, changes in the intrahippocampal neuro-populational activity and dynamics at the circuit-level may contribute substantively to the functional capacity of this region. Within the hippocampus, the dentate gyrus has the potential to make a preferential contribution to neural circuit modification owing to the continuous addition of new granule cell population. The integration of newborn neurons into pre-existing circuitry is hypothesized to deliver a unique processing capacity, as opposed to merely replacing dying granule cells. Recent studies have begun to assess the impact of hippocampal neurogenesis by examining the extent to which adult-born neurons participate in hippocampal networks, including when newborn neurons become engaged in ongoing network activity and how they modulate circuit dynamics via their unique intrinsic physiological properties. Understanding the contributions of adult neurogenesis to hippocampal function will provide new insight into the fundamental aspects of brain plasticity, which can be used to guide therapeutic interventions to replace neural populations damaged by disease or injury.  相似文献   

6.
In the adult mammalian brain, neuroblasts are continuously produced within the subgranular zone of the hippocampus and the subventricular zone (SVZ) of the forebrain. In this review we describe how some physiological and environmental factors play important roles in regulating neurogenesis in the hippocampus. Neuroblasts in the SVZ network migrate rostrally into the olfactory bulb where they differentiate into local interneurons. We focus on the production, survival and functional consequences of these newly generated interneurons. We show that enriched odor-exposure enhances the number of newborn neurons in the adult olfactory bulb but not in the hippocampus. This effect did not result from changes in cell proliferation but rather was due to greater neuronal survival. Furthermore, the enriched condition was found to dramatically extend the olfactory memory. By maintaining a constitutive turnover of interneurons subjected to regulation by bulbar activity, ongoing neurogenesis plays a key role in olfactory memory.  相似文献   

7.
8.
Brain plasticity refers to the brain’s ability to change structure and/or function during maturation, learning, environmental challenges, or disease. Multiple and dissociable plastic changes in the adult brain involve many different levels of organization, ranging from molecules to systems, with changes in neural elements occurring hand-in-hand with changes in supportive tissue elements, such as glia cells and blood vessels. There is now substantial evidence indicating that new functional neurons are constitutively generated from endogenous pools of neural stem cells in restricted areas of the mammalian brain, throughout life. So, in addition to all the other known structural changes, entire new neurons can be added to the existing network circuitry. This addition of newborn neurons provides the brain with another tool for tinkering with the morphology of its own functional circuitry. Although the ongoing neurogenesis and migration have been extensively documented in non-mammalian species, its characteristics in mammals have just been revealed and thus several questions remain yet unanswered. Is adult neurogenesis an atavism, an empty-running leftover from evolution? What is adult neurogenesis good for and how does the brain ‘know’ that more neurons are needed? How is this functional demand translated into signals a precursor cell can detect? Adult neurogenesis may represent an adaptive response to challenges imposed by an environment and/or internal state of the animal. To ensure this function, the production, migration, and survival of newborn neurons must be tightly controlled. We attempt to address some of these questions here, using the olfactory bulb as a model system.  相似文献   

9.
Since the discovery of adult neurogenesis, a major issue is the role of newborn neurons and the function-dependent regulation of adult neurogenesis. We decided to use an animal model with a relatively simple brain to address these questions. In the adult cricket brain as in mammals, new neurons are produced throughout life. This neurogenesis occurs in the main integrative centers of the insect brain, the mushroom bodies (MBs), where the neuroblasts responsible for their formation persist after the imaginal molt. The rate of production of new neurons is controlled not only by internal cues such as morphogenetic hormones but also by external environmental cues. Adult crickets reared in an enriched sensory environment experienced an increase in neuroblast proliferation as compared with crickets reared in an impoverished environment. In addition, unilateral sensory deprivation led to reduced neurogenesis in the MB ipsilateral to the lesion. In search of a functional role for the new cells, we specifically ablated MB neuroblasts in young adults using brain-focused gamma ray irradiation. We developed a learning paradigm adapted to the cricket, which we call the "escape paradigm." Using this operant associative learning test, we showed that crickets lacking neurogenesis exhibited delayed learning and reduced memory retention of the task when olfactory cues were used. Our results suggest that environmental cues are able to influence adult neurogenesis and that, in turn, newly generated neurons participate in olfactory integration, optimizing learning abilities of the animal, and thus its adaptation to its environment. Nevertheless, odor learning in adult insects cannot always be attributed to newly born neurons because neurogenesis is completed earlier in development in many insect species. In addition, many of the irradiated crickets performed significantly better than chance on the operant learning task.  相似文献   

10.
Neurogenesis in the adult hippocampus   总被引:1,自引:0,他引:1  
New neurons continue to be generated in two privileged areas of the adult brain: the dentate gyrus of the hippocampal formation and the olfactory bulb. Adult neurogenesis has been found in all mammals studied to date, including humans. The process of adult neurogenesis encompasses the proliferation of resident neural stem and progenitor cells and their subsequent differentiation, migration, and functional integration into the pre-existing circuitry. This article summarizes recent findings regarding the developmental steps involved in adult hippocampal neurogenesis and the possible functional roles that new hippocampal neurons might play.  相似文献   

11.
12.
Whereas animal models of depression are associated with decreased adult hippocampal neurogenesis, antidepressant treatments, including pharmacotherapy but also electroconvulsive therapy, have the opposite action, as they stimulate cell proliferation and the survival and maturation of newborn dentate gyrus neurons. Although the lack of these new cells is not causally involved in depression, as their absence does not trigger a depressive-episode per se, their loss has been shown to be causally involved in the ability of chronic monoaminergic antidepressants to achieve remission. However, the process by which the stimulation of hippocampal neurogenesis can elicit recovery after a depressive-like episode is poorly understood. The accepted view is that hippocampal newborn neurons integrate into the hippocampal network and thus participate in hippocampal cognitive functions crucial for remission. The hippocampus is associated with a wide range of such functions, including spatial navigation, pattern separation, encoding of new contextual information, emotional behavior and control over the hypothalamic-pituitary-adrenal axis. The present review aims at discussing each of these functions and tries to identify the process by which newborn cells participate in remission after successful therapy. Finally, future directions are proposed for a better understanding of these mechanisms.  相似文献   

13.
神经发生是神经干细胞在适当的条件下分化成功能性整合神经元的过程,主要包括细胞的增殖、迁移、分化和存活。成年神经发生区以前脑室管膜下区(Subventricular zones,SVZ)和海马齿状回颗粒层下区(Subgranular zones,SGZ)为主,但皮质作为神经元和神经胶质细胞数量最多、分布最广,同时也是哺乳动物高度发展的脑区,是否有成年神经元新生,已成为近年来神经科学领域的研究热点[1,2]。现本文就未成熟神经元在皮质区的研究方法、分布、来源与转归、病理生理功能影响等方面探讨成年哺乳动物皮质神经发生现象。  相似文献   

14.
Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.  相似文献   

15.
Overexpression of suppressor of cytokine signalling 2 (SOCS2) has been shown to promote hippocampal neurogenesis in vivo and promote neurite outgrowth of neurons in vitro. In the adult mouse brain, SOCS2 is most highly expressed in the hippocampal CA3 region and at lower levels in the dentate gyrus, an expression pattern that suggests a role in adult neurogenesis. Herein we examine generation of neuroblasts and their maturation into more mature neurons in SOCS2 null (SOCS2KO) mice. EdU was administered for 7 days to label proliferative neural precursor cells. The number of EdU-labelled doublecortin+ neuroblasts and NeuN+ mature neurons they generated was examined at day 8 and day 35, respectively. While no effect of SOCS2 deletion was observed in neuroblast generation, it reduced the numbers of EdU-labelled mature newborn neurons at 35 days. As SOCS2 regulates neurite outgrowth and dentate granule neurons project to the CA3 region, alterations in dendritic arborisation or spine formation may have correlated with the decreased numbers of EdU-labelled newborn neurons. SOCS2KO mice were crossed with Nes-CreERT2/mTmG mice, in which membrane eGFP is inducibly expressed in neural precursor cells and their progeny, and the dendrite and dendritic spine morphology of newborn neurons were examined at 35 days. SOCS2 deletion had no effect on total dendrite length, number of dendritic segments, number of branch points or total dendritic spine density but increased the number of mature “mushroom” spines. Our results suggest that endogenous SOCS2 regulates numbers of EdU-labelled mature newborn adult hippocampal neurons, possibly by mediating their survival and that this may be via a mechanism regulating dendritic spine maturation.  相似文献   

16.
Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell–specific knockdown of cyclin-dependent kinase 5 (cdk5) activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.  相似文献   

17.
New neurons are generated throughout life in distinct areas of the mammalian brain. This process, called adult neurogenesis, has challenged previously held concepts about adult brain plasticity and opened novel therapeutic avenues to treat certain neuro-psychiatric diseases. Here, we review the current knowledge regarding the fate and potency of neural stem cells (NSCs), as well as the mechanisms underlying neuronal differentiation and subsequent integration. Furthermore, we discuss the functional significance of adult neurogenesis in health and disease, and offer brief insight into the future directions of the adult neurogenesis field.  相似文献   

18.
Ming GL  Song H 《Neuron》2011,70(4):687-702
Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms, and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade.  相似文献   

19.
Mitotically active regions persist in the brains of decapod crustaceans throughout their lifetimes, as they do in many vertebrates. The most well-studied of these regions in decapods occurs within a soma cluster, known as cluster 10, located in the deutocerebrum. Cluster 10 in crayfish and lobsters is composed of the somata of two anatomically and functionally distinct classes of projection neurons: olfactory lobe (OL) projection neurons and accessory lobe (AL) projection neurons. While adult-generated cells in cluster 10 survive for at least a year, their final phenotypes remain unknown. To address this question, we combined BrdU labeling of proliferating cells with specific neuronal and glial markers and tracers to examine the differentiation of newborn cells in cluster 10 of the crayfish, Cherax destructor. Our results show that large numbers of adult-generated cells in cluster 10 differentiate into neurons expressing the neuropeptide crustacean-SIFamide. No evidence was obtained suggesting that cells differentiate into glia. The functional phenotypes of newborn neurons in cluster 10 were examined by combining BrdU immunocytochemistry with the application of dextran dyes to different brain neuropils. These studies showed that while the majority of cells born during the early postembryonic development of C. destructor differentiate in AL projection neurons, neurogenesis in adult crayfish is characterized by the addition of both OL and AL projection neurons. In addition to our examination of neurogenesis in the olfactory pathway, we provide the first evidence that adult neurogenesis is also a characteristic feature of the optic neuropils of decapod crustaceans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号