首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medial prefrontal cortex (mPFC) is implicated in anxiety-like behaviour. In rodent models, perturbations of mPFC neuronal activity through pharmacological manipulations, optogenetic activation of mPFC neurons or cell-type specific pharmacogenetic inhibition of somatostatin interneurons indicate conflicting effects on anxiety-like behaviour. In the present study we examined the effects of pharmacogenetic activation of Ca2+/calmodulin-dependent protein kinase α (CamKIIα)-positive excitatory neurons on anxiety-like behaviour. We used clozapine-N-oxide (CNO) to pharmacogenetically activate virally delivered CamKIIα-hM3Dq-DREADD in mPFC excitatory neurons. The effects of acute CNO or vehicle treatment on anxiety-like behaviour in the open field and elevated plus maze tests were examined in rats virally infected with either CamKIIα-hM3Dq-DREADD or CamKIIα-GFP. In addition, the effects of acute CNO treatment on the expression of the neuronal activity marker c-Fos were examined in the mPFC as well as downstream target neuronal circuits using immunohistochemistry. Acute pharmacogenetic activation of mPFC excitatory neurons evoked a significant decrease in anxiety-like behaviour selectively on the elevated plus maze task, but not the open field test. Acute CNO treatment resulted in enhanced c-Fos-immunopositive cell number in the infralimbic, prelimbic and cingulate subdivisions of the mPFC. This was also accompanied by enhanced c-Fos-immunopositive cell number in multiple downstream circuits of the mPFC in CNO-treated hM3Dq animals. Acute pharmacogenetic activation of mPFC excitatory neurons reduces anxiety-like behaviour in a task-specific fashion accompanied by enhanced c-Fos expression in the mPFC and multiple target circuits implicated in the regulation of anxiety-like behaviour.  相似文献   

2.
It is thought that discrete subregions of the medial prefrontal cortex (mPFC) regulate different aspects of appetitive behavior, however, physiological support for this hypothesis has been lacking. In the present study, we used multichannel single-unit recording to compare the response of neurons in the prelimbic (PL) and infralimbic (IL) subregions of the mPFC, in rats pressing a lever to obtain sucrose pellets on a variable interval schedule of reinforcement (VI-60). Approximately 25% of neurons in both structures exhibited prominent excitatory responses during rewarded, but not unrewarded, lever presses. The time courses of reward responses in PL and IL, however, were markedly different. Most PL neurons exhibited fast and transient responses at the delivery of sucrose pellets, whereas most IL neurons exhibited delayed and prolonged responses associated with the collection of earned sucrose pellets. We further examined the functional significance of reward responses in IL and PL with local pharmacological inactivation. IL inactivation significantly delayed the collection of earned sucrose pellets, whereas PL inactivation produced no discernible effects. These findings support the hypothesis that PL and IL signal distinct aspects of appetitive behavior, and suggest that IL signaling facilitates reward collection.  相似文献   

3.
Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP) which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sIAHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC) and extracellular regulated kinase (ERK) activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.  相似文献   

4.
Neurons in the auditory cortex are believed to utilize temporal patterns of neural activity to accurately process auditory information but the intrinsic neuronal mechanism underlying the control of auditory neural activity is not known. The slowly activating, persistent K+ channel, also called M-channel that belongs to the Kv7 family, is already known to be important in regulating subthreshold neural excitability and synaptic summation in neocortical and hippocampal pyramidal neurons. However, its functional role in the primary auditory cortex (A1) has never been characterized. In this study, we investigated the roles of M-channels on neuronal excitability, short-term plasticity, and synaptic summation of A1 layer 2/3 regular spiking pyramidal neurons with whole-cell current-clamp recordings in vitro. We found that blocking M-channels with a selective M-channel blocker, XE991, significantly increased neural excitability of A1 layer 2/3 pyramidal neurons. Furthermore, M-channels controled synaptic responses of intralaminar-evoked excitatory postsynaptic potentials (EPSPs); XE991 significantly increased EPSP amplitude, decreased the rate of short-term depression, and increased the synaptic summation. These results suggest that M-channels are involved in controlling spike output patterns and synaptic responses of A1 layer 2/3 pyramidal neurons, which would have important implications in auditory information processing.  相似文献   

5.
The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) together form a thalamocortical circuit that has been implicated in the learning and production of goal-directed actions. In this study we measured neural activity in both regions simultaneously, as rats learned to press a lever to earn food rewards. In both MD and mPFC, instrumental learning was accompanied by dramatic changes in the firing patterns of the neurons, in particular the rapid emergence of single-unit neural activity reflecting the completion of the action and reward delivery. In addition, we observed distinct patterns of changes in the oscillatory LFP response in MD and mPFC. With learning, there was a significant increase in theta band oscillations (6–10 Hz) in the MD, but not in the mPFC. By contrast, gamma band oscillations (40–55 Hz) increased in the mPFC, but not in the MD. Coherence between these two regions also changed with learning: gamma coherence in relation to reward delivery increased, whereas theta coherence did not. Together these results suggest that, as rats learned the instrumental contingency between action and outcome, the emergence of task related neural activity is accompanied by enhanced functional interaction between MD and mPFC in response to the reward feedback.  相似文献   

6.
Caillard O 《PloS one》2011,6(7):e22322
Frequency and timing of action potential discharge are key elements for coding and transfer of information between neurons. The nature and location of the synaptic contacts, the biophysical parameters of the receptor-operated channels and their kinetics of activation are major determinants of the firing behaviour of each individual neuron. Ultimately the intrinsic excitability of each neuron determines the input-output function. Here we evaluate the influence of spontaneous GABAergic synaptic activity on the timing of action potentials in Layer 2/3 pyramidal neurones in acute brain slices from the somatosensory cortex of young rats. Somatic dynamic current injection to mimic synaptic input events was employed, together with a simple computational model that reproduce subthreshold membrane properties. Besides the well-documented control of neuronal excitability, spontaneous background GABAergic activity has a major detrimental effect on spike timing. In fact, GABA(A) receptors tune the relationship between the excitability and fidelity of pyramidal neurons via a postsynaptic (the reversal potential for GABA(A) activity) and a presynaptic (the frequency of spontaneous activity) mechanism. GABAergic activity can decrease or increase the excitability of pyramidal neurones, depending on the difference between the reversal potential for GABA(A) receptors and the threshold for action potential. In contrast, spike time jitter can only be increased proportionally to the difference between these two membrane potentials. Changes in excitability by background GABAergic activity can therefore only be associated with deterioration of the reliability of spike timing.  相似文献   

7.
Alcohol dependence and withdrawal has been shown to cause neuroadaptive changes at multiple levels of the nervous system. At the neuron level, adaptations of synaptic connections have been extensively studied in a number of brain areas and accumulating evidence also shows the importance of alcohol dependence-related changes in the intrinsic cellular properties of neurons. At the same time, it is still largely unknown how such neural adaptations impact the firing and integrative properties of neurons. To address these problems, here, we analyze physiological properties of neurons in the bed nucleus of stria terminalis (jcBNST) in animals with a history of alcohol dependence. As a comprehensive approach, first we measure passive and active membrane properties of neurons using conventional current clamp protocols and then analyze their firing responses under the action of simulated synaptic bombardment via dynamic clamp. We find that most physiological properties as measured by DC current injection are barely affected during protracted withdrawal. However, neuronal excitability as measured from firing responses under simulated synaptic inputs with the dynamic clamp is markedly reduced in all 3 types of jcBNST neurons. These results support the importance of studying the effects of alcohol and drugs of abuse on the firing properties of neurons with dynamic clamp protocols designed to bring the neurons into a high conductance state. Since the jcBNST integrates excitatory inputs from the basolateral amygdala (BLA) and cortical inputs from the infralimbic and the insular cortices and in turn is believed to contribute to the inhibitory input to the central nucleus of the amygdala (CeA) the reduced excitability of the jcBNST during protracted withdrawal in alcohol-dependent animals will likely affect ability of the jcBNST to shape the activity and output of the CeA.  相似文献   

8.
C Müller  H Beck  D Coulter  S Remy 《Neuron》2012,75(5):851-864
The transformation of dendritic excitatory synaptic inputs to axonal action potential output is the fundamental computation performed by all principal neurons. We show that in the hippocampus this transformation is potently controlled by recurrent inhibitory microcircuits. However, excitatory input on highly excitable dendritic branches could resist inhibitory?control by generating strong dendritic spikes and?trigger precisely timed action potential output. Furthermore, we show that inhibition-sensitive branches can be transformed into inhibition-resistant, strongly spiking branches by intrinsic plasticity of branch excitability. In addition, we demonstrate that the inhibitory control of spatially defined dendritic excitation is strongly regulated by network activity patterns. Our findings suggest that dendritic spikes may serve to transform correlated branch input into reliable and temporally precise output even in the presence of inhibition.  相似文献   

9.
10.
Chronic exposure to psychostimulants induces neuro-adaptations in ion channel function of dopamine (DA)-innervated cells localized within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Although neuroplasticity in ion channel function is initially found in drug-sensitized animals, it has recently been believed to underlie the withdrawal effects of cocaine, including craving that leads to relapse in human addicts. Recent studies have also revealed remarkable differences in altered ion channel activities between mPFC pyramidal neurons and medium spiny NAc neurons in cocaine-withdrawn animals. In response to psychostimulant or certain “excitatory” stimuli, increased intrinsic excitability is found in mPFC pyramidal neurons, whereas decreased excitability is observed in medium spiny NAc cells in drug-withdrawn animals compared to drug-free control animals. These changes in ion channel function are modulated by interrupted DA/Ca2+ signaling with decreased DA D2 receptor function but increased D1 receptor signaling. More importantly, they are correlated to behavioral changes in cocaine-withdrawn human addicts and sensitized animals. Based on growing evidence, researchers have proposed that cocaine-induced neuro-adaptations in ion channel activity and DA/Ca2+ signaling in mPFC pyramidal neurons and medium spiny NAc cells may be the fundamental cellular mechanism underlying the cocaine withdrawal effects observed in human addicts.  相似文献   

11.
Prenatal exposure to infection is known to affect brain development and has been linked to increased risk for schizophrenia. The goal of this study was to investigate whether maternal infection and associated fever near term disrupts synaptic transmission in the hippocampus of the offspring. We used LPS to mimic bacterial infection and trigger the maternal inflammatory response in near-term rats. LPS was administered to rats on embryonic days 15 and 16 and hippocampal synaptic transmission was evaluated in the offspring on postnatal days 20-25. Only offspring from rats that showed a fever in response to LPS were tested. Schaffer collateral-evoked field excitatory postsynaptic potentials (fEPSPs) and fiber volleys in CA1 of hippocampal slices appeared smaller in offspring from the LPS group compared with controls, but, when the fEPSPs were normalized to the amplitude of fiber volleys, they were larger in the LPS group. In addition, intrinsic excitability of CA1 pyramidal neurons was heightened, as antidromic field responses in the LPS group were greater than those from control. Short-, but not long-term plasticity was impaired since paired-pulse facilitation of the fEPSP was attenuated in the LPS group, whereas no differences in long-term potentiation were noted. These results suggest that LPS-induced inflammation during pregnancy produces in the offspring a reduction in presynaptic input to CA1 with compensatory enhancements in postsynaptic glutamatergic response and pyramidal cell excitability. Neurodevelopmental disruption triggered by prenatal infection can have profound effects on hippocampal synaptic transmission, likely contributing to the memory and cognitive deficits observed in schizophrenia.  相似文献   

12.
Inhibitory interneurons shape the spiking characteristics and computational properties of cortical networks. Interneuron subtypes can precisely regulate cortical function but the roles of interneuron subtypes for promoting different regimes of cortical activity remains unclear. Therefore, we investigated the impact of fast spiking and non-fast spiking interneuron subtypes on cortical activity using a network model with connectivity and synaptic properties constrained by experimental data. We found that network properties were more sensitive to modulation of the fast spiking population, with reductions of fast spiking excitability generating strong spike correlations and network oscillations. Paradoxically, reduced fast spiking excitability produced a reduction of global excitation-inhibition balance and features of an inhibition stabilised network, in which firing rates were driven by the activity of excitatory neurons within the network. Further analysis revealed that the synaptic interactions and biophysical features associated with fast spiking interneurons, in particular their rapid intrinsic response properties and short synaptic latency, enabled this state transition by enhancing gain within the excitatory population. Therefore, fast spiking interneurons may be uniquely positioned to control the strength of recurrent excitatory connectivity and the transition to an inhibition stabilised regime. Overall, our results suggest that interneuron subtypes can exert selective control over excitatory gain allowing for differential modulation of global network state.  相似文献   

13.
V A Doze  G A Cohen  D V Madison 《Neuron》1991,6(6):889-900
Norepinephrine is an endogenous neurotransmitter that reduces synaptic inhibition onto pyramidal neurons in the hippocampus by an action at an alpha-adrenergic receptor. The physiological mechanism of this disinhibition was previously not known, except that it occurred at a site presynaptic to the inhibited pyramidal cell. In this paper we present evidence that adrenergic disinhibition is restricted to the early phase of the evoked inhibitory postsynaptic potential in area CA1 of the hippocampus. The locus of disinhibition does not appear to reside in the interneuronal terminal, axon, or cell body. Instead, adrenergic agonists appear to reduce evoked synaptic inhibition by depressing excitatory synapses that activate the interneuron.  相似文献   

14.
Chevaleyre V  Castillo PE 《Neuron》2003,38(3):461-472
Neuronal excitability and long-term synaptic plasticity at excitatory synapses are critically dependent on the level of inhibition, and accordingly, changes of inhibitory synaptic efficacy should have great impact on neuronal function and neural network processing. We describe here a form of activity-dependent long-term depression at hippocampal inhibitory synapses that is triggered postsynaptically via glutamate receptor activation but is expressed presynaptically. That is, glutamate released by repetitive activation of Schaffer collaterals activates group I metabotropic glutamate receptors at CA1 pyramidal cells, triggering a persistent reduction of GABA release that is mediated by endocannabinoids. This heterosynaptic form of plasticity is involved in changes of pyramidal cell excitability associated with long-term potentiation at excitatory synapses and could account for the effects of cannabinoids on learning and memory.  相似文献   

15.
In rodents, the infralimbic (IL) region of the medial prefrontal cortex plays a key role in the recall of fear extinction. Previously we showed that fear conditioning decreases the intrinsic excitability of IL neurons, and that fear extinction reverses the depressed excitability. In the current study, we examined the time course of the extinction-induced changes in adolescent rats. Immediately after extinction, IL neurons continued to show depressed excitability. However 4 hours after extinction, IL neurons showed an increase in evoked spikes that correlated with a reduced fast afterhyperpolarizing potential. This suggests that acquisition of fear extinction induces an increase in spike firing 4 hours later, during the consolidation of extinction. We also examined IL excitability in a group of rats that showed spontaneous recovery of fear 17 days after extinction (SR group). Similar to neurons after fear conditioning, IL neurons from the SR group showed depressed intrinsic excitability compared to neurons 4 hours after extinction, suggesting that extinction-induced enhancement in intrinsic excitability decreases with time reverting back to a depressed state. These results suggest that plasticity in IL contributes to the spontaneous recovery of fear and preventing this depression of IL excitability could prolong fear extinction.  相似文献   

16.
A single nicotine exposure increases dopamine levels in the mesolimbic reward system for hours, but nicotine concentrations experienced by smokers desensitize nAChRs on dopamine neurons in seconds to minutes. Here, we show that persistent modulation of both GABAergic and glutamatergic synaptic transmission by nicotine can contribute to the sustained increase in dopamine neuron excitability. Nicotine enhances GABAergic transmission transiently, which is followed by a persistent depression of these inhibitory inputs due to nAChR desensitization. Simultaneously, nicotine enhances glutamatergic transmission through nAChRs that desensitize less than those on GABA neurons. The net effect is a shift toward excitation of the dopamine reward system. These results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.  相似文献   

17.
Dopamine (DA) receptors in the prefrontal cortex (PFC) modulate both synaptic and intrinsic plasticity that may contribute to cognitive processing. However, the ionic basis underlying DA actions to enhance neuronal plasticity in PFC remains ill-defined. Using whole-cell patch-clamp recordings in layer V-VI pyramidal cells in prepubertal rat PFC, we showed that DA, via activation of D1/5, but not D2/3/4, receptors suppress a Ca2+-dependent, apamin-sensitive K+ channel that mediates post-spike/burst afterhyperpolarization (AHP) to enhance neuronal excitability of PFC neurons. This inhibition is not dependent on HCN channels. The D1/5 receptor activation also enhanced an afterdepolarizing potential (ADP) that follows the AHP. Additional single-spike analyses revealed that DA or D1/5 receptor activation suppressed the apamin-sensitive post-spike mAHP, further contributing to the increase in evoked spike firing to enhance the neuronal excitability. Taken together, the D1/5 receptor modulates intrinsic mechanisms that amplify a long depolarizing input to sustain spike firing outputs in pyramidal PFC neurons.  相似文献   

18.
《Developmental neurobiology》2017,77(12):1371-1384
Developmental changes that occur in the prefrontal cortex during adolescence alter behavior. These behavioral alterations likely stem from changes in prefrontal cortex neuronal activity, which may depend on the properties and expression of ion channels. Nav1.9 sodium channels conduct a Na+ current that is TTX resistant with a low threshold and noninactivating over time. The purpose of this study was to assess the presence of Nav1.9 channels in medial prefrontal cortex (mPFC) layer II and V pyramidal neurons in young (20‐day old), late adolescent (60‐day old), and adult (6‐ to 7‐month old) rats. First, we demonstrated that layer II and V mPFC pyramidal neurons in slices obtained from young rats exhibited a TTX‐resistant, low‐threshold, noninactivating, and voltage‐dependent Na+ current. The mRNA expression of the SCN11a gene (which encodes the Nav1.9 channel) in mPFC tissue was significantly higher in young rats than in late adolescent and adult rats. Nav1.9 protein was immunofluorescently labeled in mPFC cells in slices and analyzed via confocal microscopy. Nav1.9 immunolabeling was present in layer II and V mPFC pyramidal neurons and was more prominent in the neurons of young rats than in the neurons of late adolescent and adult rats. We conclude that Nav1.9 channels are expressed in layer II and V mPFC pyramidal neurons and that Nav1.9 protein expression in the mPFC pyramidal neurons of late adolescent and adult rats is lower than that in the neurons of young rats. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1371–1384, 2017  相似文献   

19.
Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of?target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.  相似文献   

20.
突触前α7烟碱受体对海马神经元兴奋性突触传递的调控   总被引:3,自引:1,他引:3  
Liu ZW  Yang S  Zhang YX  Liu CH 《生理学报》2003,55(6):731-735
采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholinel receptors,nAChRs)对海马脑片CAl区锥体神经元兴奋性突触传递的调控作用。结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl—piperazinium iodide,DMPP)不能在CAl区锥体神经元上诱发出烟碱电流。DMPP对CAl区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系。DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用。上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断。上述结果提示,海马脑片CAl区锥体神经元兴奋性突触前nAChRs含有对α-银环蛇毒素敏感的胡亚单位,其激活可增强海马CAl区锥体神经元突触前递质谷氨酸的释放,从而对兴奋性突触传递发挥调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号