首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite recent progress in cell-analysis technology, rapid classification of cells remains a very difficult task. Among the techniques available, flow cytometry (FCM) is considered especially powerful, because it is able to perform multiparametric analyses of single biological particles at a high flow rate-up to several thousand particles per second. Moreover, FCM is nondestructive, and flow cytometric analysis can be performed on live cells. The current limit for simultaneously detectable fluorescence signals in FCM is around 8-15 depending upon the instrument. Obtaining multiparametric measurements is a very complex task, and the necessity for fluorescence spectral overlap compensation creates a number of additional difficulties to solve. Further, to obtain well-separated single spectral bands a very complex set of optical filters is required. This study describes the key components and principles involved in building a next-generation flow cytometer based on a 32-channel PMT array detector, a phase-volume holographic grating, and a fast electronic board. The system is capable of full-spectral data collection and spectral analysis at the single-cell level. As demonstrated using fluorescent microspheres and lymphocytes labeled with a cocktail of antibodies (CD45/FITC, CD4/PE, CD8/ECD, and CD3/Cy5), the presented technology is able to simultaneously collect 32 narrow bands of fluorescence from single particles flowing across the laser beam in <5 μs. These 32 discrete values provide a proxy of the full fluorescence emission spectrum for each single particle (cell). Advanced statistical analysis has then been performed to separate the various clusters of lymphocytes. The average spectrum computed for each cluster has been used to characterize the corresponding combination of antibodies, and thus identify the various lymphocytes subsets. The powerful data-collection capabilities of this flow cytometer open up significant opportunities for advanced analytical approaches, including spectral unmixing and unsupervised or supervised classification.  相似文献   

2.
3.
BACKGROUND: In lymphatic organs, the quantitative analysis of the spatial distribution of leukocytes by tissue cytometry would give relevant information about alterations during diseases (leukemia, HIV, AIDS) and their therapeutic regimen, as well as in experimental settings. METHODS: We have developed a semiautomated analysis method for laser scanning cytometry (LSC) termed "multiple thresholding," which is suitable for archived or fresh biopsy material of human lymph nodes and tonsils. Sections are stained with PI for nuclear DNA and up to four antigens using direct or indirect immunofluorescence staining. Measurement is triggered on DNA-fluorescence (argon laser, Ar) or on specific cell labeling. Due to the heterogeneity of cell density, measurements are performed repeatedly at different threshold levels (low threshold: regions of low cellular density, germinal center; high threshold: dense regions, mantle zone). Data are acquired by single- (Ar) or dual-laser excitation (Ar-HeNe) in order to analyze single- (FITC) up to four-color (FITC/PE/PECy5/APC) stained specimen. RESULTS: Percentage and cellular density of cell-subsets is quantified in different microanatomical regions of the specimen. These data were highly correlated with manual scoring of identical specimens (r(2) = 0.96, P < 0.0001). With LSC, semiautomated operator-independent immunophenotyping in tissue sections of lymphatic organs with up to three antibodies simultaneously is possible. CONCLUSIONS: We expect this tissue cytometric approach to yield new insight into processes during diseases and help to quantify the success of therapeutic interventions.  相似文献   

4.
BACKGROUND: In tissue context, researchers and pathologists lack a generally applicable standard for quantitative determination of cytological parameters. Increasing knowledge of disease-specific markers calls for an appropriate in situ tissue cytometry. METHODS: Microscopy-based multicolor tissue cytometry (MMTC) permits multicolor analysis of single cells within tissue context. RESULTS: Tissue specimens stained for CD45/CD3/CD4/CD8 were analyzed. Specificity as well as reproducibility of MMTC is demonstrated and a novel MMTC-based function to improve visual discrimination of subpopulations is introduced. CONCLUSIONS: Our data demonstrate that MMTC constitutes an important step toward automated and quantitative fluorometry of solid tissues and cell monolayers.  相似文献   

5.
6.
Detecting cytokine production at the single-cell level   总被引:1,自引:0,他引:1  
C E Lewis 《Cytokine》1991,3(3):184-188
Cytokines are versatile mediators of intercellular communication. Their functional diversity has aroused considerable interest and prompted the rapid development of a number of techniques for their detection and measurement. However, conventional cytokine assays measure only their bulk release by large numbers of cells and give no indication of the identity or frequency of producer cells. Here, the advantages and disadvantages of a relatively new approach to detect cytokine production by single cells are reviewed.  相似文献   

7.
We recently reported that the exposure of cancer cells to 14 MeV neutrons at a very low dose rate (0.8 mGy min(-1)) produced a marked increase in cell killing at 5 cGy, followed by a plateau in survival and chromosomal damage. Simulation of the energy deposition events in irradiated cells may help to explain these unusual cell responses. We describe here a Monte Carlo simulation code, Energy Deposition in Cells Irradiated by Neutrons (EDCIN). The procedure considered the experimental setup and a hemispheric cell model. The simulation data fitted the dosimetric measurements performed using tissue-equivalent ionization chambers, Geiger-Müller counters, fission chambers, and silicon diodes. The simulation showed that 80% of the energy deposited in a single cell came from the interactions of neutrons outside the cell and only 20% came from neutron interactions inside the cell. Thus the "external" interactions that result in the production of recoil protons and secondary electrons may induce most of the biological damage, which may be repaired efficiently at low dose rate. The repair process may be triggered from a threshold level of damage, which would explain an initial increase cell death due to unrepaired sublethal damage, and then may compensate for induced damage, resulting in the plateaus.  相似文献   

8.
BACKGROUND: Presentation of multiple interactions is of vital importance in the new field of cytomics. Quantitative analysis of multi- and polychromatic stained cells in tissue will serve as a basis for medical diagnosis and prediction of disease in forthcoming years. A major problem associated with huge interdependent data sets is visualization. Therefore, alternative and easy-to-handle strategies for data visualization as well as data meta-evaluation (population analysis, cross-correlation, co-expression analysis) were developed. METHODS: To facilitate human comprehension of complex data, 3D parallel coordinate systems have been developed and used in automated microscopy-based multicolor tissue cytometry (MMTC). Frozen sections of human skin were stained using the combination anti-CD45-PE, anti-CD14-APC, and SytoxGreen as well as the appropriate single and double negative controls. Stained sections were analyzed using automated confocal laser microscopy and semiquantitative MMTC-analysis with TissueQuest 2.0. The 3D parallel coordinate plots are generated from semiquantitative immunofluorescent data of single cells. The 2D and 3D parallel coordinate plots were produced by further processing using the Matlab environment (Mathworks, USA). RESULTS: Current techniques in data visualization primarily utilize scattergrams, where two parameters are plotted against each other on linear or logarithmic scales. However, data evaluation on cartesian x/y-scattergrams is, in general, only of limited value in multiparameter analysis. Dot plots suffer from serious problems, and in particular, do not meet the requirements of polychromatic high-context tissue cytometry of millions of cells. The 3D parallel coordinate plot replaces the vast amount of scattergrams that are usually needed for the cross-correlation analysis. As a result, the scientist is able to perform the data meta-evaluation by using one single plot. On the basis of 2D parallel coordinate systems, a density isosurface is created for representing the event population in an intuitive way. CONCLUSIONS: The proposed method opens new possibilities to represent and explore multidimensional data in the perspective of cytomics and other life sciences, e.g., DNA chip array technology. Current protocols in immunofluorescence permit simultaneous staining of up to 17 markers. Showing the cross-correlation between these markers requires 136 scattergrams, which is a prohibitively high number. The improved data visualization method allows the observation of such complex patterns in only one 3D plot and could take advantage of the latest developments in 3D imaging.  相似文献   

9.
To date, characterization of latently infected tissue with respect to the number of cells in the tissue harboring the viral genome and the number of viral genomes contained within individual latently infected cells has not been possible. This level of cellular quantification is a critical step in determining (i) viral or host cell factors which function in the establishment and maintenance of latency, (ii) the relationship between latency burden and reactivation, and (iii) the effectiveness of vaccines or antivirals in reducing or preventing the establishment of latent infections. Presented here is a novel approach for the quantitative analysis of nucleic acids within the individual cells comprising complex solid tissues. One unique feature is that the analysis reflects the nucleic acids within the individual cells as they were in the context of the intact tissue-hence the name CXA, for contextual analysis. Trigeminal ganglia latently infected with herpes simplex virus (HSV) were analyzed by CXA of viral DNA. Both the type and the number of cells harboring the viral genome as well as the number of viral genomes within the individual latently infected cells were determined. Here it is demonstrated that (i) the long-term repository of HSV-1 DNA in the ganglion is the neuron, (ii) the viral-genome copy number within individual latently infected neurons is variable, ranging over 3 orders of magnitude from <10 to >1,000, (iii) there is a direct correlation between increasing viral input titer and the number of neurons in which latency is established in the ganglion, (iv) increasing viral input titer results in more neurons with greater numbers of viral-genome copies, (v) treatment with acyclovir (ACV) during acute infection reduces the number of latently infected ganglionic neurons 20-fold, and (vi) ACV treatment results in uniformly low (<10)-copy-number latency. This report represents the first comprehensive quantification of HSV latency at the level of single cells. Beyond viral latency, CXA has the potential to advance many studies in which rare cellular events occur in the background of a complex solid tissue mass, including microbial pathogenesis, tumorigenesis, and analysis of gene transfer.  相似文献   

10.
Myocardial contractility is crucial for cardiac output and heart function. But the detailed mechanisms of regulation remain unclear. In the present study, we found that HIP-55, an actin binding protein, negatively regulates myocardial contractility at the single-cell level. HIP-55 was overexpressed and knocked down in cardiomyocytes with an adenovirus infection. The traction forces exerted by single cardiomyocyte were measured using cell traction force microscopy. The results showed that HIP-55 knockdown significantly increased the contractility of the cardiomyocytes and HIP-55 overexpression could markedly reverse this process. Furthermore, HIP-55 was obviously co-localized with F-actin in cardiomyocytes, suggesting that HIP-55 regulated cardiac contractile function through the interaction between HIP-55 and F-actin. This study reveals the regulatory mechanisms of myocardial contractility and provides a new target for preventing and treating cardiovascular disease.  相似文献   

11.
Phenotypic characterization of individual cells provides crucial insights into intercellular heterogeneity and enables access to information that is unavailable from ensemble averaged, bulk cell analyses. Single-cell studies have attracted significant interest in recent years and spurred the development of a variety of commercially available and research-grade technologies. To quantify cell-to-cell variability of cell populations, we have developed an experimental platform for real-time measurements of oxygen consumption (OC) kinetics at the single-cell level. Unique challenges inherent to these single-cell measurements arise, and no existing data analysis methodology is available to address them. Here we present a data processing and analysis method that addresses challenges encountered with this unique type of data in order to extract biologically relevant information. We applied the method to analyze OC profiles obtained with single cells of two different cell lines derived from metaplastic and dysplastic human Barrett's esophageal epithelium. In terms of method development, three main challenges were considered for this heterogeneous dynamic system: (i) high levels of noise, (ii) the lack of a priori knowledge of single-cell dynamics, and (iii) the role of intercellular variability within and across cell types. Several strategies and solutions to address each of these three challenges are presented. The features such as slopes, intercepts, breakpoint or change-point were extracted for every OC profile and compared across individual cells and cell types. The results demonstrated that the extracted features facilitated exposition of subtle differences between individual cells and their responses to cell-cell interactions. With minor modifications, this method can be used to process and analyze data from other acquisition and experimental modalities at the single-cell level, providing a valuable statistical framework for single-cell analysis.  相似文献   

12.
13.
There is increasing interest in bioengineering of lipids for use in functional foods, pharmaceuticals, and biofuels. Saccharomyces cerevisiae is a widely utilized cell factory for biotechnological production, thus a tempting alternative. Herein, we show how its neutral lipid accumulation varies throughout metabolic phases under nutritional conditions relevant for large-scale fermentation. Population-averaged metabolic data were correlated with lipid storage at the single-cell level monitored at submicron resolution by label-free coherent anti-Stokes Raman scattering (CARS) microscopy. While lipid droplet sizes are fairly constant, the number of droplets is a dynamic parameter determined by glucose and ethanol levels. The lowest number of lipid droplets is observed in the transition phase between glucose and ethanol fermentation. It is followed by a buildup during the ethanol phase. The surplus of accumulated lipids is then mobilized at concurrent glucose and ethanol starvation in the subsequent stationary phase. Thus, the highest amount of lipids is found in the ethanol phase, which is about 0.3 fL/cell. Our results indicate that the budding yeast, S. cerevisiae, can be used for the biosynthesis of lipids and demonstrate the strength of CARS microscopy for monitoring the dynamics of lipid metabolism at the single-cell level of importance for optimized lipid production.  相似文献   

14.
15.
The heterogeneity of microorganisms themselves is orders of magnitude greater than the heterogeneity of perspectives from which they are contemplated by human observers. Even closely related species may exhibit marked differences in biochemistry and behavior, and, under many conditions, similar, striking heterogeneity may exist within a clonal population of organisms which, in the aggregate, occupy too small a region of space to be visible to the unaided human eye. Using methods of microscopy, microspectrophotometry, and cytometry developed and refined since the 1960s, it is now possible to characterize the physiology and pharmacology of individual microorganisms, and, in many cases, to isolate organisms with selected characteristics for culture and/or further analysis. These methods include fluorescent and confocal microscopy, scanning and image cytometry, and flow cytometry. Fluorescence measurements are particularly important in single-cell analysis; they allow demonstration and quantification of cells' nucleic acid content and sequence, of the presence of specific antigens, and of physiologic characteristics such as enzyme activity and membrane potential. Multiparameter cytometry, combined with cell sorting, provides insight into population heterogeneity and allows selected cells to be separated for further analysis and culture. The technology is applicable to a wide range of problems in contemporary microbiology, including strain selection and the development of antimicrobial agents.  相似文献   

16.
A Vβ TCR repertoire is analyzed for understanding the T-cell population in the immune response. However, the TCR repertoire of the Vα-Vβ pair is difficult to analyze because no suitable analytical method is available. Here, we have applied the single-cell 5′-RACE method for amplifying TCR cDNAs from single T-cells and analyzed the repertoire of Vα-Vβ pairs in human T-cells that responded to a superantigen, SEB. We found that the TCR Vβ profile of the SEB-stimulated CD4+ T-cells was in accordance with the previous reports, that the TCR Vα profile also exhibited a prominent difference, and that the TCR Vα-Vβ pairs of the SEB-responding T-cells were promiscuous. We have also found a significant dual TCRα expression in single T-cells. This is the first report of a comprehensive analysis of the functional repertoire of Vα-Vβ pairs at the single T-cell level. This novel method may contribute to TCR-based immunotherapeutics.  相似文献   

17.
Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal—Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.  相似文献   

18.
19.
20.
A number of studies have previously examined the capacity of intracellular Leishmania parasites to modulate the capacity of macrophages to process and present Ags to MHC class II-restricted CD4(+) T cells. However, the bulk culture approaches used for assessing T cell activation make interpretation of some of these studies difficult. To gain a more precise understanding of the interaction between Leishmania-infected macrophages and effector T cells, we have analyzed various parameters of T cell activation in individual macrophage-T cell conjugates. Leishmania-infected macrophages efficiently stimulate Ag-independent as well as Ag-dependent, TCR-mediated capping of cortical F-actin in DO.11 T cells. However, infected macrophages are less efficient at promoting the sustained TCR signaling necessary for reorientation of the T cell microtubule organizing center and for IFN-gamma production. A reduced ability to activate these T cell responses was not due to altered levels of surface-expressed MHC class II-peptide complexes. This study represents the first direct single-cell analysis of the impact of intracellular infection on the interaction of macrophages with T cells and serves to emphasize the subtle influence Leishmania has on APC function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号