首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterotrimeric G protein signaling is involved in many pathways essential to development including those controlling cell migration, proliferation, differentiation and apoptosis. One key developmental event known to rely on proper heterotrimeric G protein signaling is primordial germ cell (PGC) migration. We previously developed an in vivo PGC migration assay that identified differences in the signaling capacity of G protein gamma subunits. In this study we developed Gγ subunit chimeras to determine the regions of Gγ isoforms that are responsible for these differences. The central section of the Gγ subunit was found to be necessary for the ability of a Gγ subunit to mediate signaling involved in PGC migration. Residues found in the carboxy-terminal segment of Gγ transducin (gngt1) were found to be responsible for the ability of this subunit to disrupt PGC migration. The type of prenylation did not affect the ability of a Gγ subunit to reverse prenylation-deficient-Gγ-induced PGC migration defects. However, a version of gng2, engineered to be farnesylated instead of geranylgeranylated, still lacks the ability to reverse PGC migration defects known to result from treatment of zebrafish with geranylgeranyl transferase inhibitors (GGTI), supporting the notion that Gγ subunits are one of several protein targets that need to be geranylgeranylated to orchestrate the proper long-range migration of PGCs.  相似文献   

2.
The aim of this work was to sample the diversity of G protein alpha subunits in lepidopteran insect cell lines. Here we report the amplification by degenerate PCR of partial sequences representing six G protein alpha subunits from three different lepidopteran insect cell lines. Sequence comparisons with known G protein alpha subunits indicate that the Sf9, Ld and High Five cell lines each contain (at least) one Galpha(q)-like and one Galpha(i)-like Galpha subunit. All six PCR products are unique at the nucleotide level, but the translation products of the three Galpha q-like partial clones (Sf9-Galpha 1, Ld-Galpha 1, and Hi5-Galpha 1) are identical, as are the translation products of the three Galpha i-like partial clones (Sf9-Galpha 2, Ld-Galpha 2, and Hi5-Galpha 2). Both the Galpha(q)-like and Galpha(i)-like translation products are identical to known Galpha subunits from other Lepidoptera, are highly similar (88-98%) to Galpha subunits from other invertebrates including mosquitoes, fruit flies, lobsters, crabs, and snails, and are also highly similar (88-90%) to known mammalian Galpha subunits. Identification of G protein alpha subunits in lepidopteran cell lines will assist in host cell line selection when insect cell lines are used for the pharmacological analysis of human GPCRs.  相似文献   

3.
Two genes in the rice genome were identified as those encoding the gamma subunits, gamma1 and gamma2, of heterotrimeric G proteins. Using antibodies against the recombinant proteins for the alpha, beta, gamma1, and gamma2 subunits of the G protein complexes, all of the subunits were proven to be localized in the plasma membrane in rice. Gel filtration of solubilized plasma membrane proteins showed that all of the alpha subunits were present in large protein complexes (about 400 kDa) containing the other subunits, beta, gamma1, and gamma2, and probably also some other proteins, whereas large amounts of the beta and gamma (gamma1 and gamma2) subunits were freed from the large complexes and took a 60-kDa form. A yeast two-hybrid assay and co-immunoprecipitation experiments showed that the beta subunit interacted tightly with the gamma1 and gamma2 subunits, and so the beta and gamma subunits appeared to form dimers in rice cells. Some dimers were associated with the alpha subunit, because few beta, gamma1, and gamma2 subunits were present in the 400-kDa complexes in a rice mutant, d1, which was lacking in the alpha subunit. When a constitutively active form of the alpha subunit was prepared by the exchange of one amino acid residue and introduced into d1, the mutagenized subunit was localized in the plasma membrane of the transformants and took a free, and not the 400-kDa, form.  相似文献   

4.
Ric-8A and Ric-8B are nonreceptor G protein guanine nucleotide exchange factors that collectively bind the four subfamilies of G protein α subunits. Co-expression of Gα subunits with Ric-8A or Ric-8B in HEK293 cells or insect cells greatly promoted Gα protein expression. We exploited these characteristics of Ric-8 proteins to develop a simplified method for recombinant G protein α subunit purification that was applicable to all Gα subunit classes. The method allowed production of the olfactory adenylyl cyclase stimulatory protein Gα(olf) for the first time and unprecedented yield of Gα(q) and Gα(13). Gα subunits were co-expressed with GST-tagged Ric-8A or Ric-8B in insect cells. GST-Ric-8·Gα complexes were isolated from whole cell detergent lysates with glutathione-Sepharose. Gα subunits were dissociated from GST-Ric-8 with GDP-AlF(4)(-) (GTP mimicry) and found to be >80% pure, bind guanosine 5'-[γ-thio]triphosphate (GTPγS), and stimulate appropriate G protein effector enzymes. A primary characterization of Gα(olf) showed that it binds GTPγS at a rate marginally slower than Gα(s short) and directly activates adenylyl cyclase isoforms 3, 5, and 6 with less efficacy than Gα(s short).  相似文献   

5.
异三聚体G蛋白(Heterotrimeric GTP-binding proteins)是真核生物中一类重要的信号传导分子,由Gα、Gβ和Gγ3个亚基组成。异三聚体G蛋白不仅参与了植物的生长发育调控,而且还在多种非生物胁迫应答中起着重要的调控作用。本文着重介绍异三聚体G蛋白在植物非生物胁迫应答中的作用及可能的调控机制,并结合当前研究现状对未来研究方向提出展望,以期为今后深入研究异三聚体G蛋白在植物非生物胁迫应答中的调控机制提供参考。  相似文献   

6.
《The Journal of cell biology》1996,133(5):1027-1040
Heterotrimeric G proteins are well known to be involved in signaling via plasma membrane (PM) receptors. Recent data indicate that heterotrimeric G proteins are also present on intracellular membranes and may regulate vesicular transport along the exocytic pathway. We have used subcellular fractionation and immunocytochemical localization to investigate the distribution of G alpha and G beta gamma subunits in the rat exocrine pancreas which is highly specialized for protein secretion. We show that G alpha s, G alpha i3 and G alpha q/11 are present in Golgi fractions which are > 95% devoid of PM. Removal of residual PM by absorption on wheat germ agglutinin (WGA) did not deplete G alpha subunits. G alpha s was largely restricted to TGN- enriched fractions by immunoblotting, whereas G alpha i3 and G alpha q/11 were broadly distributed across Golgi fractions. G alpha s did not colocalize with TGN38 or caveolin, suggesting that G alpha s is associated with a distinct population of membranes. G beta subunits were barely detectable in purified Golgi fractions. By immunofluorescence and immunogold labeling, G beta subunits were detected on PM but not on Golgi membranes, whereas G alpha s and G alpha i3 were readily detected on both Golgi and PM. G alpha and G beta subunits were not found on membranes of zymogen granules. These data indicate that G alpha s, G alpha q/11, and G alpha i3 associate with Golgi membranes independent of G beta subunits and have distinctive distributions within the Golgi stack. G beta subunits are thought to lock G alpha in the GDP-bound form, prevent it from activating its effector, and assist in anchoring it to the PM. Therefore the presence of free G alpha subunits on Golgi membranes has several important functional implications: it suggests that G alpha subunits associated with Golgi membranes are in the active, GTP-bound form or are bound to some other unidentified protein(s) which can substitute for G beta gamma subunits. It further implies that G alpha subunits are tethered to Golgi membranes by posttranslational modifications (e.g., palmitoylation) or by binding to another protein(s).  相似文献   

7.
The deficient mutant for the rice heterotrimeric G protein α subunit gene (RGA1), d1, showed dwarfism and set small seed due to a reduced cell number. Mutants for the rice heterotrimeric G protein β subunit gene (RGB1) have not been isolated. To determine the functions of RGB1, transgenic rice plants with suppressed expression of RGB1 were studied using the RNAi method. RGB1 knock-down lines showed browning of the lamina joint regions and nodes and reduced fertility, but these abnormality were not observed in d1. Transgenic plants in which the G protein β subunit was greatly decreased were not obtained, suggesting that the complete suppression of RGB1 mRNA may be lethal. In contrast, the d1 mutants, with complete loss of the G protein α subunit, were fertile and half the size of the WT. These studies suggest that RGB1 has different functions than RGA1.  相似文献   

8.
The heterotrimeric G proteins are a conserved family of guanyl nucleotide-binding proteins that appear in all eukaryotic cells but whose developmental functions are largely unknown. We have examined the developmental expression of representative G proteins in the developing nervous system of the moth Manduca sexta. Using affinity-purified antisera against different Gα subunits, we found that each of the G proteins exhibited distinctive patterns of expression within the developing central nervous system (CNS), and that these patterns underwent progressive phases of spatial and temporal regulation that corresponded to specific aspects of neuronal differentiation. Several of the G proteins examined (including Gsα and Goα) were expressed in an apparently ubiquitous manner in all neurons, but other proteins (including Giα) were ultimately confined to a more restricted subset of cells in the mature CNS. Although most of the G proteins examined could be detected within the central ganglia, only Goα-related proteins were seen in the developing peripheral nerves; manipulations of G protein activity in cultured embryos suggested that this class of G protein may contribute to the regulation of neuronal motility during axonal outgrowth. Goα-related protein were also localized to the developing axons and terminals of the developing adult limb during metamorphosis. These intracellular signaling molecules may, therefore, play similar developmental roles in both the embryonic and postembryonic nervous system. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Heterotrimeric G protein complexes are conserved from plants to mammals, but the complexity of each system varies. Arabidopsis thaliana contains one Gα, one Gβ (AGB1), and at least three Gγ subunits, allowing it to form three versions of the heterotrimer. This plant model is ideal for genetic studies because mammalian systems contain hundreds of unique heterotrimers. The activation of these complexes promotes interactions between both the Gα subunit and the Gβγ dimer with enzymes and scaffolds to propagate signaling to the cytoplasm. However, although effectors of Gα and Gβ are known in mammals, no Gβ effectors were previously known in plants. Toward identifying AGB1 effectors, we genetically screened for dominant mutations that suppress Gβ-null mutant (agb1-2) phenotypes. We found that overexpression of acireductone dioxygenase 1 (ARD1) suppresses the 2-day-old etiolated phenotype of agb1-2. ARD1 is homologous to prokaryotic and eukaryotic ARD proteins; one function of ARDs is to operate in the methionine salvage pathway. We show here that ARD1 is an active metalloenzyme, and AGB1 and ARD1 both control embryonic hypocotyl length by modulating cell division; they also may contribute to the production of ethylene, a product of the methionine salvage pathway. ARD1 physically interacts with AGB1, and ARD enzymatic activity is stimulated by AGB1 in vitro. The binding interface on AGB1 was deduced using a comparative evolutionary approach and tested using recombinant AGB1 mutants. A possible mechanism for AGB1 activation of ARD1 activity was tested using directed mutations in a loop near the substrate-binding site.  相似文献   

10.
Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. Each subunit of the G protein complex is encoded by a member of one of three corresponding gene families. Currently, 16 different members of the alpha subunit family, 5 different members of the beta subunit family, and 11 different members of the gamma subunit family have been described in mammals. Here we have identified and characterized Bacterial Artificial Chromosomes (BACs) containing the human homologs of each of the alpha, beta, and gamma subunit genes as well as a G alpha11 pseudogene and a previously undiscovered G gamma5-like gene. The gene structure and chromosome location of each gene was determined, as were the orientations of paired genes. These results provide greater insight into the evolution and functional diversity of the mammalian G protein subunit genes.  相似文献   

11.
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein βγ dimers (Gβγ) and inhibiting their ability to interact with G protein subunits (G) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gβγ dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gβγ subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.  相似文献   

12.
The R7 family of regulators of G protein signaling (RGS) proteins, comprising RGS6, RGS7, RGS9, and RGS11, regulate neuronal G protein signaling pathways. All members of the R7 RGS form trimeric complexes with the atypical G protein β subunit, Gβ5, and membrane anchor R7BP or R9AP. Association with Gβ5 and membrane anchors has been shown to be critical for maintaining proteolytic stability of the R7 RGS proteins. However, despite its functional importance, the mechanism of how R7 RGS forms complexes with Gβ5 and membrane anchors remains poorly understood. Here, we used protein-protein interaction, co-localization, and protein stability assays to show that association of RGS9 with membrane anchors requires Gβ5. We further establish that the recruitment of R7BP to the complex requires an intact interface between the N-terminal lobe of RGS9 and protein interaction surface of Gβ5. Site-directed mutational analysis reveals that distinct molecular determinants in the interface between Gβ5 and N-terminal Dishevelled, EGL-10, Pleckstrin/DEP Helical Extension (DEP/DHEY) domains are differentially involved in R7BP binding and proteolytic stabilization. On the basis of these findings, we conclude that Gβ5 contributes to the formation of the binding site to the membrane anchors and thus is playing a central role in the assembly of the proteolytically stable trimeric complex and its correct localization in the cell.  相似文献   

13.
PKD is the founding member of a novel protein kinase family that also includes PKD2 and PKD3. PKD has been the focus of most studies up to date, but little is known about the mechanisms that mediate PKD3 activation. Here, we show that addition of aluminum fluoride to COS-7 cells cotransfected with PKD3 and Galpha13 or Galpha12 induced PKD3 activation, which was associated with a transient plasma membrane translocation of cytosolic PKD3. Treatment with Clostridium difficile toxin B blocked PKD3 activation induced by either bombesin or by aluminum fluoride-stimulated Galpha12/13 but did not affect Galphaq-induced PKD3 activation. Furthermore, PKD3 immunoprecipitated from cells cotransfected with a constitutively active Rac (RacV12) exhibited a marked increase in PKD3 basal catalytic activity. In contrast, cotransfection with active Rho (RhoQ63L), Cdc42 (Cdc42Q61L), or Ras (RasV12) did not promote PKD3 activation. Expression of either COOH-terminal dominant-negative fragment of Galpha13 or dominant negative Rac (Rac N17) attenuated bombesin-induced PKD3 activation. Treatment with protein kinase C (PKC) inhibitors prevented the increase in PKD3 activity induced by RacV12 and aluminum fluoride-stimulated Galpha12/13. The catalytic activation of PKD3 in response to RacV12, alpha12/13 signaling or bombesin correlated with Ser-731/Ser-735 phosphorylation in the activation loop of this enzyme. Our results indicate that Galpha12/13 and Rac are important components in the signal transduction pathways that mediate bombesin receptor-induced PKD3 activation.  相似文献   

14.
The function of guanine nucleotide binding (G) proteins is Mg2+ dependent with guanine nucleotide exchange requiring higher metal ion concentration than guanosine 5′-triphosphate hydrolysis. It is unclear whether two Mg2+ binding sites are present or if one Mg2+ binding site exhibits different affinities for the inactive GDP-bound or the active GTP-bound conformations. We used furaptra, a Mg2+-specific fluorophore, to investigate Mg2+ binding to α subunits in both conformations of the stimulatory (G) and inhibitory (Giα1) regulators of adenylyl cyclase. Regardless of the conformation or α protein studied, we found that two distinct Mg2+ sites were present with dissimilar affinities. With the exception of G in the active conformation, cooperativity between the two Mg2+ sites was also observed. Whereas the high affinity Mg2+ site corresponds to that observed in published X-ray structures of G proteins, the low affinity Mg2+ site may involve coordination to the terminal phosphate of the nucleotide.  相似文献   

15.
G protein-coupled receptors (GPCRs) represent the largest class of integral membrane protein receptors in the human genome. Despite the great diversity of ligands that activate these GPCRs, they interact with a relatively small number of intracellular proteins to induce profound physiological change. Both heterotrimeric G proteins and GPCR kinases are well known for their ability to specifically recognize GPCRs in their active state. Recent structural studies now suggest that heterotrimeric G proteins and GPCR kinases identify activated receptors via a common molecular mechanism despite having completely different folds.  相似文献   

16.
17.
Arabidopsis thaliana plants with null mutations in the genes encoding the alpha and beta subunits of the single heterotrimeric G protein are less and more sensitive, respectively, to O3 damage than wild-type Columbia-0 plants. The first peak of the bimodal oxidative burst elicited by O3 in wild-type plants is almost entirely missing in both mutants. The late peak is normal in plants lacking the Gbeta protein but missing in plants lacking the Galpha protein. Endogenous reactive oxygen species (ROS) are first detectable in chloroplasts of leaf epidermal guard cells. ROS production in adjacent cells is triggered by extracellular ROS signals produced by guard cell membrane-associated NADPH oxidases encoded by the AtrbohD and AtrbohF genes. The late, tissue damage-associated component of the oxidative burst requires only the Galpha protein and arises from multiple cellular sources. The early component of the oxidative burst, arising primarily from chloroplasts, requires signaling through the heterotrimer (or the Gbetagamma complex) and is separable from Galpha-mediated activation of membrane-bound NADPH oxidases necessary for both intercellular signaling and cell death.  相似文献   

18.
Intracellular accumulation of denatured proteins impairs cellular function. The proteasome is recognized as an enzyme responsible for the effective clearance of those cytotoxic denatured proteins. As another enzyme that participates in the destruction of damaged proteins, we have identified oxidized protein hydrolase (OPH) and found that OPH confers cellular resistance to various kinds of oxidative stress. In this study, we demonstrate the roles of the proteasome and OPH in the clearance of denatured proteins. The inhibition of proteasome activity results in the elevation of protein carbonyls in cells under oxidative stress. On the other hand, cells overexpressing OPH retain higher resistance to oxidative stress, even though the proteasome activity is inhibited. Furthermore, upon inhibition of the proteasome activity, OPH is recruited to a novel organelle termed the aggresome where misfolded or denatured proteins are processed. Thus, OPH and the proteasome coordinately contribute to the clearance of cytotoxic denatured proteins.  相似文献   

19.
Ferritin is a class of iron storage protein composed of 24 subunits. Although many studies on gene expression analyses of plant ferritin have been conducted, the functions and oligomeric assembly of plant ferritin subunits are still largely unknown. In order to characterize the ability to form multimeric protein shells and determine the iron incorporating activity, we produced ferritin homo- and heteropolymers by expressing four cDNAs of ferritin subunits from soybean, sfer1, sfer2, sfer3, and sfer4, using an in vitro protein expression system. Using SDS-PAGE analysis followed by Prussian blue stain, homopolymers of SFER1, SFER2, and SFER3, and heteropolymers of SFER1/SFER2 and SFER1/SFER3 were detected as assembled polymers with iron incorporating activity, whereas only a small amount of SFER4 related homo- and heteropolymer was detected, suggesting that the SFER4 was not competent for oligomeric assembly, unlike every other ferritin. We conclude that certain combinations of plant ferritin subunits can form heteropolymers and that their iron incorporating activities depend on the formation of multimeric protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号